留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

保护性耕作对黑土有机碳组分和玉米产量的影响

李宇航 谷思玉 何婉莹 王紫颖 车延静 袁望博 杨佳宇

李宇航, 谷思玉, 何婉莹, 王紫颖, 车延静, 袁望博, 杨佳宇. 保护性耕作对黑土有机碳组分和玉米产量的影响[J]. 土壤通报, 2023, 54(2): 336 − 345 doi: 10.19336/j.cnki.trtb.2022050902
引用本文: 李宇航, 谷思玉, 何婉莹, 王紫颖, 车延静, 袁望博, 杨佳宇. 保护性耕作对黑土有机碳组分和玉米产量的影响[J]. 土壤通报, 2023, 54(2): 336 − 345 doi: 10.19336/j.cnki.trtb.2022050902
LI Yu-hang, GU Si-yu, HE Wan-ying, WANG Zi-ying, CHE Yan-jing, YUAN Wang-bo, YANG Jia-yu. Effects of Conservation Tillage Practices on Organic Carbon Components and Maize Yield in Black Soil[J]. Chinese Journal of Soil Science, 2023, 54(2): 336 − 345 doi: 10.19336/j.cnki.trtb.2022050902
Citation: LI Yu-hang, GU Si-yu, HE Wan-ying, WANG Zi-ying, CHE Yan-jing, YUAN Wang-bo, YANG Jia-yu. Effects of Conservation Tillage Practices on Organic Carbon Components and Maize Yield in Black Soil[J]. Chinese Journal of Soil Science, 2023, 54(2): 336 − 345 doi: 10.19336/j.cnki.trtb.2022050902

保护性耕作对黑土有机碳组分和玉米产量的影响

doi: 10.19336/j.cnki.trtb.2022050902
基金项目: 十四五黑土重点研发项目(2021YFD0300502-1)资助
详细信息
    作者简介:

    李宇航(1996−),男,河南省开封市人,硕士研究生,从事土壤肥力调控和土壤健康方面研究。E-mail:liyuhang19961114@163.com

    通讯作者:

    E-mail:gusiyu@neau.edu.cn

  • 中图分类号: S153.6

Effects of Conservation Tillage Practices on Organic Carbon Components and Maize Yield in Black Soil

  • 摘要:   目的  探究不同保护性耕作措施对黑土有机碳组分的影响,对于保持黑土生态稳定性及其高肥力水平具有重要意义。  方法  以农田黑土为研究对象,玉米为供试作物,采用随机区组设计,设置传统翻耕(CT)、传统翻耕 + 秸秆还田(CTSI)、免耕(NT)、免耕 + 秸秆还田(NTSI)、深松(ST)和深松 + 秸秆还田(STSI),共6个处理,采用密度分组法,研究不同保护性耕作措施对耕层土壤(0 ~ 20 cm)有机碳组分含量、结构特征及玉米产量的影响。  结果  与CT处理相比,不同保护性耕作处理土壤总有机碳含量均显著提高(P < 0.05)。ST处理轻组有机碳、粗颗粒有机碳和细颗粒有机碳组分含量均较CT处理显著增加(P < 0.05),与不还田相比,秸秆还田处理有机碳各组分含量均增加,NTSI处理较CTSI处理显著提高轻组有机碳含量,STSI处理较CTSI处理显著提高粗颗粒有机碳和细颗粒有机碳含量。主成分分析表明,与CT处理相比,NT、NTSI、ST和STSI处理均能提高轻组有机碳多糖和碳水化合物官能团的相对含量;保护性耕作措施较CT处理不仅增加了粗颗粒有机碳和细颗粒有机碳组分活性官能团相对含量,还增加了稳定性官能团相对含量,有利于土壤稳定性结构的形成,促进碳的固存。耕作与秸秆还田显著影响了玉米产量,ST较CT和NT处理分别显著提高了22.37%和21.42%(P < 0.05),秸秆还田处理有利于玉米产量提升,STSI处理增产效果最佳;相关性分析表明,粗颗粒有机碳能有效指示土壤有机碳的变化,其与细颗粒有机碳在维持和提升玉米产量中具有重要贡献。  结论  采用深松结合秸秆还田的保护性耕作措施对于稳定与提高黑土有机碳含量、固持土壤碳库和增加玉米产量具有重要作用。
  • 图  1  不同处理土壤总有机碳含量的变化

    不同小写字母表示在0.05水平上差异显著。CT:翻耕,CTSI:翻耕 + 秸秆还田,NT:免耕,NTSI:免耕 + 秸秆还田,ST:深松,STSI:深松 + 秸秆还田。

    Figure  1.  Changes of total organic carbon contents under different treatments

    图  2  不同处理土壤轻组有机碳(a)、粗颗粒有机碳(b)、细颗粒有机碳(c)和矿质结合态有机碳(d)含量的变化

    不同小写字母表示在0.05水平上差异显著。CT:翻耕,CTSI:翻耕 + 秸秆还田,NT:免耕,NTSI:免耕 + 秸秆还田,ST:深松,STSI:深松 + 秸秆还田。

    Figure  2.  Changes of light fraction organic carbon (a), course particle organic carbon (b), fine particle organic carbon (c), and mineral-associated organic carbon under different treatments

    图  3  不同处理土壤轻组有机碳(a)、粗颗粒有机碳(b)、细颗粒有机碳(c)和矿质结合态有机碳(d)红外光谱特征

    CT:翻耕,CTSI:翻耕 + 秸秆还田,NT:免耕,NTSI:免耕 + 秸秆还田,ST:深松,STSI:深松 + 秸秆还田。

    Figure  3.  Infrared spectrum characteristic of light fraction organic carbon (a), course particle organic carbon (b), fine particle organic carbon (c), and mineral-associated organic carbon under different treatments

    图  4  土壤有机碳组分的主成分分析

    图中a,b,c,d,e,f分别代表CT(翻耕),CTSI(翻耕 + 秸秆还田),NT(免耕),NTSI(免耕 + 秸秆还田),ST(深松),STSI(深松 + 秸秆还田)处理。

    Figure  4.  Principle component analysis of soil organic carbon components

    图  5  不同处理玉米产量的变化

    T,S和T × S分别耕作、秸秆还田以及二者的交互作用。*表示P < 0.05,**表示P < 0.01,不同小写字母表示在0.05水平上差异显著。CT:翻耕,CTSI:翻耕 + 秸秆还田,NT:免耕,NTSI:免耕 + 秸秆还田,ST:深松,STSI:深松 + 秸秆还田。

    Figure  5.  Changes of maize yield under different treatments

    图  6  玉米产量与土壤总有机碳和有机碳组分相关性分析

    *表示P < 0.05,*表示P < 0.01。TOC:总有机碳,LFOC:轻组有机碳,CPOC:粗颗粒有机碳,FPOC:细颗粒有机碳,MAOC:矿质结合态有机碳,Yield:玉米产量。

    Figure  6.  Correlation analysis between maize yield, total organic carbon and organic carbon components

    表  1  试验处理

    Table  1.   Details of experiment design

    处理
    Treatment
    耕作方式
    Tillage practice
    翻耕 (CT)采用耕作深度可调的液压翻转犁完成,耕作深度 30 cm
    翻耕 + 秸秆还田 (CTSI)采用耕作深度可调的液压翻转犁完成,秸秆还田为机械粉碎至5 ~ 20 cm全量还田(还田量9500 kg hm−2),
    还田时间为收获后一周内
    免耕 (NT)全年不耕作,播种时用免耕播种机一次性完成播种,秸秆全部移除
    免耕 + 秸秆还田 (NTSI)全年不耕作,采用免耕播种机完成播种,秸秆还田为机械粉碎至5 ~ 20 cm全量还田(还田量9500 kg hm−2),还田时间为收获后一周内
    深松 (ST)利用深松机垄间松动土壤,深度为30 cm
    深松 + 秸秆还田 (STSI)利用深松机垄间松动土壤,深度30 cm,秸秆还田为机械粉碎至5 ~ 20 cm全量还田(还田量9500 kg hm−2),还田时间为收获后一周内
    下载: 导出CSV

    表  2  耕作和秸秆还田对黑土有机碳组分红外光谱特征峰相对峰强度的影响

    Table  2.   Effects of tillage and straw incorporation on infrared spectrum relative peak intensity of organic carbon components

    有机碳组分
    Organic carbon component
    处理
    Treatment
    特征峰的相对峰强度 (%)
    Relative peak intensity of characteristic peak
    -OH-NH-CHnC=CC-OSi-O
    LFOCCT3.866.224.045.1155.6422.87
    CTSI3.275.164.315.5158.6521.13
    NT3.646.074.366.0458.2914.60
    NTSI4.756.424.776.7560.3214.97
    ST5.366.694.355.3859.2015.79
    STSI4.205.804.536.4762.4414.37
    CPOCCT4.695.704.068.2350.1225.14
    CTSI4.465.604.128.6152.7922.09
    NT5.025.784.118.6752.7820.50
    NTSI4.535.774.148.7554.7419.26
    ST5.055.904.158.7352.9419.28
    STSI4.935.654.178.9054.8418.72
    FPOCCT4.815.614.198.1551.2323.84
    CTSI4.525.594.368.3752.2723.09
    NT4.865.724.478.1253.7120.40
    NTSI4.655.555.008.7854.5819.14
    ST5.025.774.238.6253.8020.82
    STSI4.965.724.468.9854.8219.11
    MAOCCT2.402.113.3010.8846.6929.91
    CTSI2.932.863.5912.0047.6727.48
    NT2.853.623.6110.5647.0230.17
    NTSI3.003.833.9911.8948.1027.43
    ST2.732.473.6811.3647.2327.98
    STSI3.023.563.9612.3748.6928.72
      注:CT:翻耕,CTSI:翻耕 + 秸秆还田,NT:免耕,NTSI:免耕 + 秸秆还田,ST:深松,STSI:深松 + 秸秆还田。
    下载: 导出CSV
  • [1] 张晓平, 梁爱珍, 申 艳, 等. 东北黑土水土流失特点[J]. 地理科学, 2006, 26(6): 687 − 692. doi: 10.3969/j.issn.1000-0690.2006.06.008
    [2] Xie H, Li J, Zhu P, et al. Long-term manure amendments enhance neutral sugar accumulation in bulk soil and particulate organic matter in a Mollisol[J]. Soil Biology and Biochemistry, 2014, 78: 45 − 53. doi: 10.1016/j.soilbio.2014.07.009
    [3] 梁 尧, 韩晓增, 丁雪丽. 东北黑土有机质组分与结构的研究进展[J]. 土壤, 2012, 44(6): 888 − 897. doi: 10.3969/j.issn.0253-9829.2012.06.002
    [4] Haynes R J. Labile organic matter fractions as central components of the quality of agricultural soils: An overview[J]. Advance in Agronomy, 2005, 85(4): 221 − 268.
    [5] 余 健, 房 莉, 卞正富, 等. 土壤碳库构成研究进展[J]. 生态学报, 2014, 34(17): 4829 − 4838.
    [6] Lipiec J, Horn R, Pietrusiewicz J, et al. Effects of soil compaction on root elongation and anatomy of different cereal plant species[J]. Soil & Tillage Research, 2012, 121: 74 − 81.
    [7] Zhang J, Yang M, Deng X, et al. The effects of tillage on sheet erosion on sloping fields in the wind-water erosion crisscross region of the Chinese Loess Plateau[J]. Soil & Tillage Research, 2019, 187: 235 − 245.
    [8] Valkama E, Kunypiyaeva G, Zhapayev R, et al. Can conservation agriculture increase soil carbon sequestration? A modelling approach[J]. Geoderma, 2020, 369: 114298. doi: 10.1016/j.geoderma.2020.114298
    [9] Siddique K H, Johansen C, Turner N C, et al. Innovations in agronomy for food legumes. A review[J]. Agronomy for Sustainable Development, 2012, 32(1): 45 − 64. doi: 10.1007/s13593-011-0021-5
    [10] 王丽宏, 胡跃高, 杨光立, 等. 农田冬季覆盖作物对土壤有机碳含量和主作物产量的影响[J]. 干旱地区农业研究, 2006, 24(6): 64 − 67. doi: 10.3321/j.issn:1000-7601.2006.06.015
    [11] 张海林, 孙国峰, 陈继康, 等. 保护性耕作对农田碳效应影响研究进展[J]. 中国农业科学, 2009, 42(12): 4275 − 4281. doi: 10.3864/j.issn.0578-1752.2009.12.019
    [12] 孟凡乔, 况 星, 张 轩, 等. 土地利用方式和栽培措施对农田土壤不同组分有机碳的影响[J]. 农业环境科学学报, 2009, 28(12): 2512 − 2519. doi: 10.3321/j.issn:1672-2043.2009.12.012
    [13] 舒 馨, 朱安宁, 张佳宝, 等. 保护性耕作对潮土不同组分有机碳、氮的影响[J]. 土壤通报, 2014, 45(2): 432 − 438.
    [14] Bayer C, Mielniczuk J, Giasson E, et al. Tillage Effects on Particulate and Mineral-Associated Organic Matter in Two Tropical Brazilian Soils[J]. Communications in Soil Science & Plant Analysis, 2006, 37(3-4): 389 − 400.
    [15] 吴 帅. 农田黑土耕层性状对不同耕作方式的响应[D]. 哈尔滨: 东北农业大学. 2020.
    [16] Qiang X, Sun J, Ning H. Impact of subsoiling on cultivated horizon construction and grain yield of winter wheat in the north china plain[J]. Agriculture, 2022, 12(2): 236 − 236. doi: 10.3390/agriculture12020236
    [17] 田慎重, 宁堂原, 王 瑜, 等. 不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响[J]. 应用生态学报, 2010, 21(2): 6.
    [18] 李 景, 吴会军, 武雪萍, 等. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量[J]. 中国农业科学, 2021, 54(2): 334 − 344. doi: 10.3864/j.issn.0578-1752.2021.02.009
    [19] 邹娟秀, 隋 鹏, 高旺盛, 等. 不同耕法和培肥措施组合对农田有机碳的影响[J]. 生态学杂志, 2013, 32(5): 1227 − 1232.
    [20] Cambardella C A, Elliott E T. Particulate soil organic matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56(3): 777 − 783. doi: 10.2136/sssaj1992.03615995005600030017x
    [21] 李 娜, 盛 明, 尤孟阳, 等. 应用13C核磁共振技术研究土壤有机质化学结构进展[J]. 土壤学报, 2019, 56(4): 796 − 812. doi: 10.11766/trxb201805150160
    [22] 张福韬, 乔云发. 红外光谱与核磁共振在土壤有机质结构研究中的应用[J]. 安徽农业科学, 2015, 43(7): 81 − 84. doi: 10.3969/j.issn.0517-6611.2015.07.030
    [23] 关 松, 郭绮雯, 刘金华, 等. 添加玉米秸秆对黑土团聚体胡敏酸数量和质量的影响[J]. 吉林农业大学学报, 2017, 39(4): 437 − 444.
    [24] 李玉洁, 王 慧, 赵建宁, 等. 耕作方式对农田土壤理化因子和生物学特性的影响[J]. 应用生态学报, 2015, 26(3): 939 − 948.
    [25] 徐国鑫, 王子芳, 高 明, 等. 秸秆与生物炭还田对土壤团聚体及固碳特征的影响[J]. 环境科学, 2018, 39(1): 355 − 362.
    [26] 王碧胜, 于维水, 武雪萍, 等. 添加玉米秸秆对旱作土壤团聚体及其有机碳含量的影响[J]. 中国农业科学, 2019, 52(9): 1553 − 1563. doi: 10.3864/j.issn.0578-1752.2019.09.007
    [27] Khalil M I, Hossain M B, Schmidhalter U. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials[J]. Soil Biology and Biochemistry, 2005, 37(8): 1507 − 1518. doi: 10.1016/j.soilbio.2005.01.014
    [28] Christensen B T. Physical fractionation of soil and organic matter in primary particle size and density separates[J]. Advance in Soil Science, 1992, 20: 1 − 90.
    [29] Spycher G, Sollins P, Rose S. Carbon and nitrogen in the light fraction of a forest soil[J]. Soil Science, 1983, 135(2): 79 − 87. doi: 10.1097/00010694-198302000-00002
    [30] Janzen H H, Campbell C A, Brandt S A, et al. Light-fraction organic matter in soils from long-term crop rotations[J]. Soil Science Society of America Journal, 1992, 56(6): 1799 − 1806. doi: 10.2136/sssaj1992.03615995005600060025x
    [31] Ray, B D. Soil structure and organic carbon: A review[J]. Advance in Soil Science, 1998, 10(2): 169 − 197.
    [32] Dalal R C, Mayer R J. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. VIII. Available nitrogen indices and their relationships to crop yield and N uptake[J]. Australian Journal of Soil Research, 1990, 24(2): 281 − 292.
    [33] Roscoe R, Buurman P. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol[J]. Soil & Tillage Research, 2003, 70(2): 107 − 119.
    [34] 孙国峰, 陈 阜, 李 琳, 等. 耕作措施对长期免耕双季稻田土壤碳库的影响[J]. 中国农业大学学报, 2007, 12(6): 45 − 49. doi: 10.3321/j.issn:1007-4333.2007.06.008
    [35] Martins M R, Angers D A, Corá J E. Co-accumulation of microbial residues and particulate organic matter in the surface layer of a no-till Oxisol under different crops[J]. Soil Biology and Biochemistry, 2012, 50: 208 − 213. doi: 10.1016/j.soilbio.2012.03.024
    [36] Oyedele D J, Schjnning P, Sibbesen E, et al. Aggregation and organic matter fractions of three Nigerian soils as affected by soil disturbance and incorporation of plant material[J]. Soil & Tillage Research, 1999, 50(2): 105 − 114.
    [37] Baker J M, Ochsner T E, Venterea R T, et al. Tillage and soil carbon sequestration-What do we really know?[J]. Agriculture Ecosystems and Environment, 2006, 118(1): 1 − 5.
    [38] 李银科, 李小刚, 张乎良, 等. 土地利用方式对荒漠土壤有机碳和养分含量的影响[J]. 甘肃农业大学学报, 2007, 42(2): 103 − 107. doi: 10.3969/j.issn.1003-4315.2007.02.023
    [39] Lajtha K, Townsend K L, Kramer M G, et al. Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems[J]. Biogeochemistry, 2014, 119(1-3): 341 − 360. doi: 10.1007/s10533-014-9970-5
    [40] 邱牡丹, 盛 浩, 颜 雄, 等. 湘东丘陵4种林地深层土壤颗粒有机碳及其组分的分配特征[J]. 农业现代化研究, 2014, 35(4): 493 − 499.
    [41] 梁爱珍, 张晓平, 杨学明, 等. 黑土颗粒态有机碳与矿物结合态有机碳的变化研究[J]. 土壤学报, 2010, 47(1): 153 − 158. doi: 10.11766/trxb2010470122
    [42] Franzluebbers A J, Arshad M A. Particulate organic carbon content and potential mineralization as affected by tillage and texture[J]. Soil Science Society of America Journal, 1997, 61(6): 1382 − 1386.
    [43] Marinho-Soriano E, Fonseca P C, Carneiro M A, et al. Seasonal variation in the chemical composition of two tropical seaweeds[J]. Bioresource Technology, 2006, 97(18): 2402 − 2406. doi: 10.1016/j.biortech.2005.10.014
    [44] Hamer U, Marschner B, Brodowski S, et al. Interactive priming of black carbon and glucose mineralization[J]. Organic Geochemistry, 2004, 35(7): 823 − 830. doi: 10.1016/j.orggeochem.2004.03.003
    [45] 唐光木, 徐万里, 周 勃, 等. 耕作年限对棉田土壤颗粒及矿物结合态有机碳的影响[J]. 水土保持学报, 2013, 27(3): 237 − 241.
    [46] Arrouays D, Saby N, Walter C, et al. Relationships between particle-size distribution and organic carbon in French arable topsoils[J]. Soil Use and Management, 2010, 22(1): 48 − 51.
    [47] 李 琳, 李素娟, 张海林, 等. 保护性耕作下土壤碳库管理指数的研究[J]. 水土保持学报, 2006, 20(3): 106 − 109. doi: 10.3321/j.issn:1009-2242.2006.03.026
    [48] Veum K S, Goyne K W, Kremer R J, et al. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum[J]. Biogeochemistry, 2014, 117(1): 81 − 99. doi: 10.1007/s10533-013-9868-7
    [49] 宋蒙亚, 吴 萌, 刘 明, 等. 不同种植年限设施菜地土壤有机质组成与结构变化[J]. 土壤通报, 2016, 47(6): 1386 − 1392.
    [50] 周 萌. 黑土有机质组分/结构特征对气候变暖及管理措施的响应[D]. 哈尔滨: 东北农业大学, 2021.
    [51] 周 萍, 宋国菡, 潘根兴, 等. 三种南方典型水稻土长期试验下有机碳积累机制研究Ⅱ. 团聚体内有机碳的化学结合机制[J]. 土壤学报, 2009, 46(2): 263 − 273. doi: 10.3321/j.issn:0564-3929.2009.02.011
    [52] 常汉达, 王 晶, 张凤华. 棉花长期连作结合秸秆还田对土壤颗粒有机碳及红外光谱特征的影响[J]. 应用生态学报, 30(4): 1218-1226.
    [53] 魏欢欢, 王仕稳, 杨文稼, 等. 免耕及深松耕对黄土高原地区春玉米和冬小麦产量及水分利用效率影响的整合分析[J]. 中国农业科学, 2017, 50(3): 461 − 477. doi: 10.3864/j.issn.0578-1752.2017.03.005
    [54] 杨 艳. 不同耕作措施对农田土壤理化性质和作物产量的影响[D]. 咸阳: 西北农林科技大学, 2017.
    [55] 张 宇, 刘恩才, 于海秋, 等. 保护性耕作对土壤水温和春玉米产量形成的影响[J]. 安徽农业科学, 2007, 35(2): 2.
    [56] Igor D, Barbara S, Szergej V, et al. The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary[J]. Soil & Tillage Research, 2019, 194: 104344.
    [57] 张敬业, 张文菊, 徐明岗, 等. 长期施肥下红壤有机碳及其颗粒组分对不同施肥模式的响应[J]. 植物营养与肥料学报, 2012, 18(4): 868 − 875.
    [58] 刘战东, 刘祖贵, 宁东峰, 等. 深松耕作对玉米水分利用和产量的影响[J]. 灌溉排水学报, 2015, 34(5): 6 − 12.
    [59] 孔晓民, 韩成卫, 曾苏明, 等. 不同耕作方式对土壤物理性状及玉米产量的影响[J]. 玉米科学, 2014, 2(1): 108 − 113. doi: 10.3969/j.issn.1005-0906.2014.01.019
    [60] Guo L J, Zhang Z S, Wang D D, et al. Effects of short-term conservation management practices on soil organic carbon fractions and microbial community composition under a rice-wheat rotation system[J]. Biology and Fertility of Soils, 2015, 51(1): 65 − 75. doi: 10.1007/s00374-014-0951-6
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  27
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 录用日期:  2022-05-12
  • 修回日期:  2022-05-17
  • 刊出日期:  2023-04-06

目录

    /

    返回文章
    返回