Effects of Biochar Application on Soil Aggregate Composition and Carbon and Nitrogen Contents in Tropical Farmland
-
摘要:
目的 利用田间试验,从土壤团聚体角度入手,着力探究不同生物炭施入量对热带农田的改良效果,以提高土壤质量。 方法 试验采用花生壳生物炭,施入量分别为10 t hm−2(P10)、20 t hm−2(P20)、40 t hm−2(P40)和60 t hm−2(P60),以不施入生物炭(CK)为对照,共计5个处理。在施入生物炭一年后,取0 ~ 10 cm、10 ~ 20 cm和20 ~ 30 cm土壤测其团聚体组成和土壤有机碳、全氮含量。 结果 生物炭施入显著增加了10 ~ 20 cm土层2 ~ 1 mm和20 ~ 30 cm土层 < 0.25 mm粒径团聚体含量,同时,显著增加了10 ~ 20 cm土层团聚体稳定性;生物炭施入使原土和各粒径团聚体有机碳和全氮含量有不同程度提升,在P40和P60处理下提升效果最明显;生物炭施入增加了10 ~ 20 cm土层2 ~ 1 mm粒径团聚体有机碳和全氮贡献率;P60处理增加了0 ~ 10 cm和10 ~ 20 cm土层几乎所有粒径团聚体和原土C/N;生物炭施入量、土层深度及其交互作用对土壤团聚体稳定性、团聚体组成、团聚体有机碳和全氮含量有显著影响。 结论 施入生物炭可显著提高10 ~ 20 cm土层土壤团聚体稳定性,施入40 t hm−2和60 t hm−2生物炭时对土壤团聚体有机碳和全氮含量提升效果最明显。因此施入40 t hm−2以上生物炭时可以有效改良热带农田土壤,提高土壤质量。 Abstract:Objective Field experiment was used to explore the improvement effect of different biochar application amounts on tropical farmland to improve soil quality from the perspective of soil aggregates. Methods Peanut shell biochar was used in the experiment, and the application amounts were 10 t hm−2 (P10), 20 t hm−2 (P20), 40 t hm−2 (P40) and 60 t hm−2 (P60), with no biochar (CK) as the control. One year after biochar application, soil aggregates and soil organic carbon and total nitrogen contents were measured in 0-10 cm, 10-20 cm and 20-30 cm soils. Results Biochar application significantly increased the aggregate content of 2-1 mm in 10-20 cm soil layer and < 0.25 mm in 20-30 cm soil layer, and significantly increased the aggregate stability in 10-20 cm soil layer. Biochar application increased the contents of organic carbon and total nitrogen in raw soil and aggregates with different particle sizes, and the effectiveness were most obvious in P40 and P60 treatments. Biochar application increased the contribution rates of organic carbon and total nitrogen in the soil layer of 10-20 cm and 2-1 mm grain size aggregates. P60 treatment increased the C/N of aggregates and primary soil in 0-10 cm and 10-20 cm soil layers. The amount of biochar application, soil depth and their interactions had significant effects on soil aggregate stability, aggregate composition, and aggregate organic carbon and total nitrogen contents. Conclusion In this experimental design, the application of 20 t hm−2 and 60 t hm−2 biochar could significantly improve the stability of soil aggregates, and the application rates of 40 t hm−2 and 60 t hm−2 biochar had the most obvious effect on the improvement of soil aggregate organic carbon and total nitrogen contents. In this study, the application of biochar above 40 t hm−2 can effectively improve tropical farmland soil and improve soil quality. -
Key words:
- Biochar /
- Soil aggregate /
- Organic carbon /
- Total nitrogen /
- Tropical farmland
-
表 1 不同生物炭施入量对土壤团聚体有机碳和有机碳贡献率的影响
Table 1. Effects of different biochar application rates on soil aggregate organic carbon and organic carbon contribution rates
土层深度
Soil depth
(cm)处理
Treatment有机碳含量(g kg–1)
Organic carbon content土壤团聚体有机碳贡献率(%)
Contribution rate of soil aggregate organic carbon原土
Original soil> 2 mm 2 ~ 1 mm 1 ~ 0.5 mm 0.5 ~ 0.25 mm < 0.25 mm > 2 mm 2 ~ 1 mm 1 ~ 0.5 mm 0.5 ~ 0.25 mm < 0.25 mm 0 ~ 10 CK 6.08 ± 0.28 c 4.66 ± 0.18 c 5.23 ± 0.24 c 6.80 ± 0.21 c 6.28 ± 0.62 c 5.86 ± 0.35 c 3.82 ± 0.11 a 12.76 ± 1.32 bc 32.15 ± 2.05 b 26.64 ± 1.41 b 24.63 ± 0.54 a P10 6.73 ± 0.64 c 6.14 ± 1.01 c 6.02 ± 0.87 c 7.19 ± 0.74 c 6.56 ± 0.63 c 6.95 ± 0.48 c 2.87 ± 0.42 abc 15.14 ± 1.51 b 30.46 ± 0.46 b 27.53 ± 1.25 b 24.00 ± 0.87 a P20 6.45 ± 0.56 c 5.13 ± 0.42 c 6.07 ± 0.28 c 6.55 ± 0.69 c 6.66 ± 0.64 c 6.79 ± 0.87 c 1.99 ± 0.10 c 23.80 ± 1.89 a 39.51 ± 1.59 a 17.78 ± 0.28 c 16.92 ± 0.94 b P40 9.28 ± 0.24 b 8.90 ± 0.49 b 9.78 ± 0.40 b 9.35 ± 0.61 b 9.88 ± 0.37 b 8.63 ± 0.30 b 2.25 ± 0.22 bc 12.40 ± 0.84bc 29.27 ± 1.93 b 33.04 ± 1.52 a 23.04 ± 0.99 a P60 13.03 ± 0.41 a 12.01 ± 1.14 a 13.54 ± 0.43 a 14.15 ± 0.64 a 12.81 ± 0.60 a 12.08 ± 0.41 a 3.65 ± 0.81 ab 9.16 ± 0.55 c 33.58 ± 1.41 b 28.16 ± 0.62 b 25.45 ± 2.10 a 10 ~ 20 CK 7.44 ± 0.44 c 7.03 ± 0.44 c 7.81 ± 0.36 c 7.95 ± 0.38 c 7.37 ± 0.71 c 6.70 ± 0.52 c 5.60 ± 0.45 a 7.17 ± 0.19 d 44.11 ± 0.55 a 23.70 ± 1.02 a 19.42 ± 0.32 a P10 7.15 ± 0.10 c 7.25 ± 0.31 c 7.84 ± 0.53 c 6.92 ± 0.30 c 7.63 ± 0.29 c 6.07 ± 0.22 c 6.66 ± 0.25 a 27.55 ± 2.18 b 35.05 ± 1.51 b 18.19 ± 0.26 b 12.55 ± 0.89 b P20 11.79 ± 0.31 b 11.35 ± 0.52 b 11.88 ± 0.36 b 12.23 ± 0.58 ab 11.71 ± 0.29 b 10.72 ± 0.50 b 4.88 ± 0.56 a 34.40 ± 1.33 a 35.43 ± 0.80 b 17.15 ± 1.37 b 8.14 ± 0.32 c P40 11.01 ± 0.53 b 11.69 ± 0.37 ab 10.35 ± 0.99 b 11.66 ± 0.55 b 10.67 ± 0.62 b 10.50 ± 0.52 b 4.74± 0.88 a 20.07 ± 1.65 c 42.00 ± 3.78 a 19.31 ± 1.15 b 13.88 ± 2.77 b P60 13.96 ± 0.28 a 13.20 ± 0.72 a 14.30 ± 0.03 a 13.78 ± 0.72 a 13.98 ± 0.32 a 13.77 ± 0.25 a 5.85 ± 0.82 a 38.63 ± 0.22 a 27.08 ± 0.84 c 13.10 ± 1.07 c 15.34 ± 0.58 ab 20 ~ 30 CK 5.38 ± 0.27 d 4.54 ± 0.41 d 5.21 ± 0.23 d 6.02 ± 0.25 d 5.24 ± 0.49 c 4.87 ± 0.22 c 3.77 ± 0.31 b 9.19 ± 0.71 a 38.58 ± 4.82 a 30.88 ± 2.72 b 17.58 ± 3.54 d P10 6.46 ± 0.09 d 8.08 ± 0.27 bc 6.97 ± 0.46 c 6.83 ± 0.31 cd 6.02 ± 0.40 c 4.81 ± 0.35 c 3.61 ± 0.44 b 8.35 ± 0.61 ab 40.22 ± 1.18 a 26.41 ± 1.10 a 21.41 ± 0.65 bc P20 10.06 ± 0.95 b 9.60 ± 1.07 ab 10.28 ± 0.77 b 10.34 ± 0.96 b 10.08 ± 1.02 b 9.74 ± 0.97 b 3.27 ± 0.86 b 8.28 ± 0.24 c 35.46 ± 0.81 a 28.43 ± 1.16 a 24.56 ± 0.37 b P40 8.47 ± 0.39 c 7.45 ± 0.17 c 9.12 ± 0.17 b 8.31 ± 0.57 c 8.58 ± 0.10 b 8.50 ± 0.72 b 3.85 ± 0.94 b 9.22 ± 0.87 ab 33.81 ± 1.37 a 25.36 ± 0.84 a 27.76 ± 1.09 a P60 12.93 ± 0.09 a 11.11 ± 0.25 a 11.91 ± 0.36 a 14.13 ± 0.40 a 13.00 ± 0.44 a 11.68 ± 0.45 a 6.04± 0.71 a 10.18 ± 0.37 b 40.79 ± 0.65 a 23.93 ± 2.12 a 19.06 ± 1.34 c 注:不同小写字母表示同一土层不同处理间同一指标的显著性差异(P < 0.05)。 表 2 不同生物炭施入量对土壤团聚体全氮和全氮贡献率的影响
Table 2. Effects of different biochar application rates on total nitrogen contents and contribution rates in soil aggregates
土层深度
Soil depth
(cm)处理
Treatment土壤全氮含量(g kg–1)
soil total nitrogen content土壤团聚体全氮贡献率(%)
Contribution rate of total nitrogen in soil aggregates原土
Original soil> 2 mm 2 ~ 1 mm 1 ~ 0.5 mm 0.5 ~ 0.25 mm < 0.25 mm > 2 mm 2 ~ 1 mm 1 ~ 0.5 mm 0.5 ~ 0.25 mm < 0.25 mm 0 ~ 10 CK 0.57 ± 0.01 c 0.49 ± 0.03 c 0.55 ± 0.01 b 0.62 ± 0.03 b 0.58 ± 0.05 b 0.54 ± 0.03 c 4.24 ± 0.23 a 14.30 ± 1.25 bc 30.83 ± 1.58 b 26.22 ± 1.37 b 24.41 ± 1.86 a P10 0.61 ± 0.02 c 0.61 ± 0.03 bc 0.61 ± 0.01 b 0.64 ± 0.01 b 0.57 ± 0.03 b 0.63 ± 0.06 bc 3.18 ± 0.38 b 16.76 ± 0.63 b 30.16 ± 1.93 b 26.21 ± 0.76 b 23.69 ± 1.57 a P20 0.58 ± 0.05 c 0.55 ± 0.01 c 0.53 ± 0.07 b 0.61 ± 0.04 b 0.65 ± 0.07 b 0.53 ± 0.06 c 2.40 ± 0.18 c 22.29 ± 0.65 a 41.53 ± 0.91 a 19.08 ± 0.88 c 14.70 ± 0.58 b P40 0.78 ± 0.03 b 0.70 ± 0.05 ab 0.77 ± 0.03 a 0.88 ± 0.03 a 0.77 ± 0.06 b 0.70 ± 0.01 b 2.17 ± 0.26 c 11.87 ± 0.73 c 33.17 ± 1.41 b 30.73 ± 0.39 ab 22.06 ± 0.49 a P60 0.93 ± 0.03 a 0.80 ± 0.05 a 0.84 ± 0.05 a 0.94 ± 0.02 a 1.04 ± 0.11 a 0.84 ± 0.03 a 3.36 ± 0.04 b 7.93 ± 0.41 d 31.56 ± 0.35 b 32.03 ± 2.42 a 25.12 ± 2.56 a 10 ~ 20 CK 0.75 ± 0.03 cd 0.82 ± 0.12 c 0.69 ± 0.06 bc 0.77 ± 0.02 c 0.79 ± 0.06 b 0.67 ± 0.03 ab 6.36 ± 0.23 a 6.27 ± 0.26 e 42.44 ± 0.49 a 25.49 ± 1.40 a 19.44 ± 0.71 a P10 0.68 ± 0.00 d 0.66 ± 0.03 c 0.65 ± 0.03 c 0.77 ± 0.04 c 0.63 ± 0.02 b 0.68 ± 0.00 b 6.38 ± 0.29 a 24.10 ± 0.89 c 41.07 ± 2.57 a 15.96 ± 0.72 b 12.49 ± 1.15 b P20 0.87 ± 0.01 ab 0.90 ± 0.03 ab 0.84 ± 0.04 ab 1.01 ± 0.05 a 0.72 ± 0.06 b 0.87 ± 0.01 a 5.36 ± 1.06 a 32.47 ± 0.66 b 39.37 ± 2.12 a 13.99 ± 0.82 b 8.81 ± 0.65 b P40 0.80 ± 0.06 bc 0.77 ± 0.05 bc 0.73 ± 0.06 bc 0.86 ± 0.09 ab 0.72 ± 0.05 b 0.80 ± 0.06 ab 6.63 ± 1.62 a 19.48 ± 0.73 d 42.26 ± 4.38 a 18.08 ± 1.59 b 13.55 ± 3.93 ab P60 0.95 ± 0.03 a 0.98 ± 0.05 a 0.97 ± 0.02 a 0.94 ± 0.07 ab 0.99 ± 0.07 a 0.95 ± 0.03 a 6.35 ± 0.59 a 38.38 ± 0.92 a 27.14 ± 0.63 b 13.80 ± 1.96 b 14.33 ± 1.21 ab 20 ~ 30 CK 0.72 ± 0.07 b 0.54 ± 0.08 c 0.59 ± 0.03 c 0.61 ± 0.06 b 0.59 ± 0.05 b 0.68 ± 0.07 c 3.87 ± 0.24 ab 9.09 ± 0.44 b 34.68 ± 5.46 a 30.73 ± 2.67 a 21.62 ± 4.35 a P10 0.76 ± 0.02 b 0.78 ± 0.02 b 0.77 ± 0.05 bc 0.81 ± 0.06 b 0.76 ± 0.02 b 0.69 ± 0.10 c 2.94 ± 0.30 ab 7.50 ± 0.75 c 38.89 ± 2.89 a 27.67 ± 0.43 abc 23.00 ± 2.82 a P20 0.79 ± 0.02 b 0.83 ± 0.08 b 0.80 ± 0.04 b 0.81 ± 0.03 b 0.78 ± 0.03 b 0.78 ± 0.05 bc 3.73 ± 1.31 ab 8.08 ± 0.27 bc 35.07 ± 1.41 a 28.06 ± 1.20 ab 25.06 ± 1.50 a P40 1.11 ± 0.07 a 1.11 ± 0.05 a 1.09 ± 0.06 a 1.15 ± 0.03 a 1.11 ± 0.11 a 1.05 ± 0.09 a 4.44 ± 1.25 ab 8.38 ± 0.35 bc 36.11 ± 1.91 a 24.82 ± 0.80 bc 26.25 ± 1.05 a P60 1.11 ± 0.08 a 1.05 ± 0.08 a 1.11 ± 0.10 a 1.19 ± 0.11 a 1.08 ± 0.08 a 0.99 ± 0.06 ab 6.91 ± 1.61 a 11.25 ± 0.14 a 39.94 ± 1.52 a 23.11 ± 0.87 c 18.79 ± 1.19 a 注:不同小写字母表示同一土层不同处理间同一指标的显著性差异(P < 0.05)。 表 3 不同生物炭施入量输对土壤团聚体C/N的影响
Table 3. Effects of different biochar application rates on C/N of soil aggregates
土层深度
Soil depth
(cm)处理
Treatment土壤C/N
Soil C/N原土
Original soil> 2 mm 2 ~ 1 mm 1 ~ 0.5 mm 0.5 ~ 0.25 mm < 0.25 mm 0 ~ 10 CK 10.69 ± 0.27 b 9.69 ± 0.75 bc 9.53 ± 0.51 b 11.05 ± 0.17 b 10.80 ± 0.39 ab 10.97 ± 1.23 b P10 10.99 ± 0.79 b 9.96 ± 1.26 bc 9.93 ± 1.51 b 11.28 ± 1.27 b 11.51 ± 0.71 ab 11.15 ± 0.41 b P20 11.04 ± 0.10 b 9.32 ± 0.70 c 11.86 ± 1.18 b 10.60 ± 0.48 b 10.31 ± 0.22 b 12.72 ± 0.54 ab P40 11.85 ± 0.40 b 12.80 ± 0.89 ab 12.65 ± 0.05 b 10.54 ± 0.43 b 12.96 ± 1.06 a 12.42 ± 0.61 ab P60 14.09 ± 0.18 a 15.09 ± 1.04 a 16.28 ± 0.80 a 14.97 ± 0.40 a 12.50 ± 0.71 ab 14.34 ± 0.27 a 10 ~ 20 CK 9.94 ± 0.38 b 8.17 ± 0.73 c 11.46 ± 0.81 b 10.32 ± 0.37 bc 9.30 ± 0.67 c 9.93 ± 0.33 b P10 10.59 ± 0.14 b 11.10 ± 0.67 bc 12.27 ± 1.36 ab 9.06 ± 0.51 c 12.12 ± 0.71 bc 10.68 ± 0.94 b P20 13.49 ± 0.44 a 12.59 ± 0.64 ab 14.28 ± 1.03 ab 12.21 ± 0.75 ab 16.62 ± 1.87 a 12.59 ± 1.00 ab P40 13.83 ± 0.55 a 15.26 ± 1.10 a 14.22 ± 1.06 ab 13.82 ± 1.39 a 14.82 ± 0.19 ab 14.89 ± 1.70 a P60 14.73 ± 0.57 a 13.53 ± 1.11 ab 14.83 ± 0.29 a 14.77 ± 1.11 a 14.25 ± 1.22 ab 15.94 ± 1.18 a 20 ~ 30 CK 7.60 ± 0.63 b 8.26 ± 0.77 bc 8.92 ± 0.42 b 10.06 ± 1.14 ab 8.92 ± 0.77 b 7.24 ± 0.57 b P10 8.50 ± 0.30 b 10.41 ± 0.48 ab 9.14 ± 0.64 b 8.53 ± 0.93 b 7.90 ± 0.52 b 7.40 ± 1.49 b P20 12.65 ± 1.04 a 11.60 ± 0.73 a 12.87 ± 1.08 a 12.74 ± 0.94 a 12.82 ± 1.00 a 12.58 ± 1.72 a P40 7.74 ± 0.77 b 6.72 ± 0.25 c 8.40 ± 0.43 b 7.23 ± 0.62 b 7.91 ± 0.79 b 8.31 ± 1.30 ab P60 11.78 ± 1.04 a 10.66 ± 0.78 ab 10.61 ± 0.81 ab 12.20 ± 1.65 a 12.09 ± 0.76 a 11.95 ± 1.15 a 注:不同小写字母表示同一土层不同处理间同一指标的显著性差异(P < 0.05)。 表 4 土壤团聚体稳定性和碳氮组分与施用量及土层深度间的双因素方差分析
Table 4. Two-way analysis of variance between soil aggregate stability and carbon and nitrogen components with application rate and soil depth
土壤变量
Soil variable施入量
Application amount土层深度
Soil depth施入量 × 土层深度
Application amount × soil depthF P F P F P MWD 24.90 < 0.01 229.60 < 0.01 26.61 < 0.01 GMD 92 < 0.01 405.49 < 0.01 135.41 < 0.01 土壤团聚体百分比含量 > 2 mm 5.10 < 0.01 14.17 < 0.01 2.22 0.05 2 ~ 1 mm 82.54 < 0.01 423.08 < 0.01 78.34 < 0.01 1 ~ 0.5 mm 2.57 0.06 11.81 < 0.01 8.48 < 0.01 0.5 ~ 0.25 mm 26.18 < 0.01 160.78 < 0.01 23.68 < 0.01 < 0.25 mm 6.53 < 0.01 51.51 < 0.01 7.29 < 0.01 土壤团聚体有机碳含量 原土 124.50 < 0.01 28.80 < 0.01 6.91 < 0.01 > 2 mm 51.69 < 0.01 27.14 < 0.01 6.21 < 0.01 2 ~ 1 mm 93.39 < 0.01 28.78 < 0.01 6.66 < 0.01 1 ~ 0.5 mm 78.20 < 0.01 12.73 < 0.01 6.40 < 0.01 0.5 ~ 0.25 mm 78.55 < 0.01 17.35 < 0.01 3.97 < 0.01 < 0.25 mm 84.02 < 0.01 14.91 < 0.01 4.18 < 0.01 土壤团聚体全氮含量 原土 30.74 < 0.01 27.19 < 0.01 3.72 < 0.01 > 2 mm 15.65 < 0.01 23.22 < 0.01 4.5 < 0.01 2 ~ 1 mm 27.14 < 0.01 23.77 < 0.01 4.36 < 0.01 1 ~ 0.5 mm 23.94 < 0.01 14.40 < 0.01 5.24 < 0.01 0.5 ~ 0.25 mm 20.55 < 0.01 6.72 < 0.01 3.01 < 0.01 < 0.25 mm 10.60 < 0.01 11.33 < 0.01 2.30 < 0.01 注:P < 0.05时显著,P < 0.01时极显著。 -
[1] 徐占军, 冯俊芳, 张 媛, 等. 工作面开采沉陷对农田土壤和植被碳库扰动预评价[J]. 煤炭学报, 2018, 43(9): 2605 − 2617. doi: 10.13225/j.cnki.jccs.2017.1357 [2] 张 赛, 王龙昌. 全球变化背景下农田生态系统碳循环研究[J]. 农机化研究, 2013, 35(1): 4 − 9. doi: 10.3969/j.issn.1003-188X.2013.01.002 [3] Paul W U. Management-induced aggregation and organic carbon concentrations in the surface layer of a Torrertic Paleustoll[J]. Soil & Tillage Research, 1997, 42(3): 185 − 208. [4] 黎宏祥, 王 彬, 王玉杰, 等. 不同林分类型对土壤团聚体稳定性及有机碳特征的影响[J]. 北京林业大学学报, 2016, 38(5): 84 − 91. [5] 袁晓良, 李俊雅, 葛 乐, 等. 不同土地利用方式对土壤团聚体稳定性及其导水率的影响[J]. 水土保持研究, 2020, 27(4): 67 − 71, 77. doi: 10.13869/j.cnki.rswc.2020.04.009 [6] Xiao Y, Zhou M, Li Y S, et al. Crop Residue Return Rather Than Organic Manure Increases Soil Aggregate Stability under Corn–Soybean Rotation in Surface Mollisols[J]. Agriculture, 2022, 12(2): 265. doi: 10.3390/agriculture12020265 [7] Jennifer C, Isabel G, Bernard L, et al. Effect of biochar and compost on soil properties and organic matter in aggregate size fractions under field conditions[J]. Agriculture, Ecosystems and Environment, 2020, 295(C): 106882. [8] 张可馨. 施用秸秆和生物炭对设施菜地土壤团聚体稳定性及碳氮固持的影响[D]. 北京农学院, 2020. [9] Matus F, Rumpel C, Neculman R, et al. Soil carbon storage and stabilisation in andic soils: A review[J]. Catena, 2014, 120: 102 − 110. doi: 10.1016/j.catena.2014.04.008 [10] 张红雪, 赵 壮, 王晓朋, 等. 生物炭对亚热带红壤水稳性团聚体及其碳、氮分布的影响[J]. 中国土壤与肥料, 2020, (6): 27 − 33. doi: 10.11838/sfsc.1673-6257.19492 [11] Sun Q, Meng J, Lan Y, et al. Long-term effects of biochar amendment on soil aggregate stability and biological binding agents in brown earth[J]. Catena, 2021, 205: 105460. doi: 10.1016/j.catena.2021.105460 [12] 李 娟, 郭 振, 徐 艳. 秸秆和生物炭对黄绵土稳定性能影响的研究[J]. 西部大开发(土地开发工程研究), 2019, 4(10): 47 − 53. [13] 林洪羽, 周明华, 张博文, 等. 生物炭及秸秆长期施用对紫色土坡耕地土壤团聚体有机碳的影响[J]. 中国生态农业学报(中英文), 2020, 28(1): 96 − 103. [14] 黄伟濠, 秦海龙, 卢 瑛, 等. 香蕉茎秆及其生物炭对珠江三角洲土壤团聚体特征的影响[J]. 中国生态农业学报(中英文), 2020, 28(3): 413 − 420. [15] 姜赛平, 张怀志, 张认连, 等. 基于三种空间预测模型的海南岛土壤有机质空间分布研究[J]. 土壤学报, 2018, 55(4): 1007 − 1017. doi: 10.11766/trxb201710240410 [16] Baties N H. Development of a world data set of soil water retention properties using pedotransfer rules[J]. Geoderma, 1996, 71(1): 31. [17] Elliott E T. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils[J]. Soil Science Society of America Journal, 1986, 50(3): 627 − 633. doi: 10.2136/sssaj1986.03615995005000030017x [18] 窦 森, 李 凯, 关 松. 土壤团聚体中有机质研究进展[J]. 土壤学报, 2011, 48(2): 412 − 418. doi: 10.11766/trxb200911220527 [19] 鲍士旦. 土壤农化分析. 3版[M]. 土壤农化分析. 3版, 2000. [20] 张英利, 许安民, 尚浩博, 等. AA3型连续流动分析仪测定土壤和植物全氮的方法研究[J]. 西北农林科技大学学报(自然科学版), 2006, 34(10): 128 − 132. [21] Brodowski S, John B, Flessa H, et al. Aggregate-occluded black carbon in soil[J]. European Journal of Soil Science, 2006, 57(4): 539 − 546. doi: 10.1111/j.1365-2389.2006.00807.x [22] 吴崇书, 邱志腾, 章明奎. 施用生物质炭对不同类型土壤物理性状的影响[J]. 浙江农业科学, 2014, (10): 1617 − 1619 + 1623. doi: 10.3969/j.issn.0528-9017.2014.10.040 [23] 吴鹏豹, 解 钰, 漆智平, 等. 生物炭对花岗岩砖红壤团聚体稳定性及其总碳分布特征的影响[J]. 草地学报, 2012, 20(4): 643 − 649. [24] 袁晶晶, 同延安, 卢绍辉, 等. 生物炭与氮肥配施改善土壤团聚体结构提高红枣产量[J]. 农业工程学报, 2018, 34(3): 159 − 165. [25] 杨天悦, 史振鑫, 孟安华, 等. 农林废弃物与有机肥配施对黑土团聚体组成及稳定性的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(1): 47 − 52. [26] 李倩倩, 许晨阳, 耿增超, 等. 生物炭对塿土土壤容重和团聚体的影响[J]. 环境科学, 2019, 40(7): 3388 − 3396. [27] 尚 杰, 耿增超, 赵 军, 等. 生物炭对塿土水热特性及团聚体稳定性的影响[J]. 应用生态学报, 2015, 26(7): 1969 − 1976. [28] 李 伟, 代 镇, 张光鑫, 等. 生物炭和氮肥配施提高土团聚体稳定性及作物产量[J]. 植物营养与肥料学报, 2019, 25(5): 782 − 791. [29] 代文才, 钱 盛, 高 明, 等. 施用生物质灰渣对柑橘园土壤团聚体及有机碳分布的影响[J]. 水土保持学报, 2016, 30(2): 260 − 265, 271. [30] 陈晓旋, 黄晓婷, 陈优阳, 等. 炉渣与生物炭配施对福州平原稻田土壤团聚体及碳、氮分布的影响[J]. 环境科学学报, 2018, 38(5): 1989 − 1998. doi: 10.13671/j.hjkxxb.2017.0513 [31] 陈红霞, 杜章留, 郭 伟, 等. 施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J]. 应用生态学报, 2011, 22(11): 2930 − 2934. [32] 刘 阳. 生物炭添加对矿区土壞团聚体稳定性、碳氮分布及酶活性的影响[D]. 太原理工大学, 2020. [33] 吴蔚君, 徐云连, 邢素林, 等. 生物炭对土壤氮磷转化和流失的影响[J]. 农学学报, 2018, 8(9): 20 − 26. doi: 10.11923/j.issn.2095-4050.cjas17050013 [34] 悦飞雪, 李继伟, 乔鑫鑫, 等. 生物炭对豫西丘陵区农田土壤团聚体稳定性及碳、氮分布的影响[J]. 水土保持学报, 2019, 33(6): 265 − 272. [35] Zhang S, Cui J W, Wu H, et al. Organic carbon, total nitrogen, and microbial community distributions within aggregates of calcareous soil treated with biochar[J]. Agriculture, Ecosystems and Environment, 2021, 314: 107408. doi: 10.1016/j.agee.2021.107408 -