留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

陕北六道沟流域地形破碎区土壤水分时空分布及其预测

董爽 贾玉华 樊向国 潘永杰

董 爽, 贾玉华, 樊向国, 潘永杰. 陕北六道沟流域地形破碎区土壤水分时空分布及其预测[J]. 土壤通报, 2023, 54(5): 1032 − 1040 doi: 10.19336/j.cnki.trtb.2022051102
引用本文: 董 爽, 贾玉华, 樊向国, 潘永杰. 陕北六道沟流域地形破碎区土壤水分时空分布及其预测[J]. 土壤通报, 2023, 54(5): 1032 − 1040 doi: 10.19336/j.cnki.trtb.2022051102
DONG Shuang, JIA Yu-hua, FAN Xiang-guo, PAN Yong-jie. The Spatial-temporal Distribution of Soil Moisture and Its Prediction in the Fragmented Terrain of Liudaogou Catchment[J]. Chinese Journal of Soil Science, 2023, 54(5): 1032 − 1040 doi: 10.19336/j.cnki.trtb.2022051102
Citation: DONG Shuang, JIA Yu-hua, FAN Xiang-guo, PAN Yong-jie. The Spatial-temporal Distribution of Soil Moisture and Its Prediction in the Fragmented Terrain of Liudaogou Catchment[J]. Chinese Journal of Soil Science, 2023, 54(5): 1032 − 1040 doi: 10.19336/j.cnki.trtb.2022051102

陕北六道沟流域地形破碎区土壤水分时空分布及其预测

doi: 10.19336/j.cnki.trtb.2022051102
基金项目: 国家自然科学基金资助项目(41571221);贵州省教育厅高等学校科学研究项目(青年项目)(黔教技〔2022〕353号)资助
详细信息
    作者简介:

    董爽:董 爽(1993−),女,辽宁沈阳人,硕士,讲师,主要从事土壤物理及土壤侵蚀研究。E-mail: dongshuang0201@163.com

    通讯作者:

    E-mail: Jiayuhua@syau.edu.cn

  • 中图分类号: TV122

The Spatial-temporal Distribution of Soil Moisture and Its Prediction in the Fragmented Terrain of Liudaogou Catchment

  • 摘要:   目的  为深入理解陕北黄土高原土壤水分时间动态特征及空间模式时间稳定性,探索代表点位预测土壤储水量和干层平均状况的可靠性。  方法  在神木六道沟流域选择一典型地形破碎区,自2014年10月至2017年7月开展土壤水分长期跟踪监测。  结果  ①观测期内,夹心式干层厚度和夹心式干层内土壤含水量分别变化于20 ~ 760 cm和6.43% ~ 10.73%之间,表现出夹心式干层随时间发育的复杂性。②土壤储水量、干层厚度和干层内土壤含水量斯皮尔曼等级相关系数均值分别为0.94、0.95和0.90,表明研究区土壤储水量及干层空间模式具有强烈的时间稳定性。③通过土壤储水量及干层时间稳定性特征分析判定,点位A5、C1和C2分别可作为预测研究区土壤储水量(R2 = 0.88)、干层厚度(R2 = 0.74)和干层内土壤含水量(R2 = 0.56)平均状况的代表点位。相比而言,利用土壤储水量和干层厚度代表点位预测结果精确度更高。  结论  在黄土高原地形破碎区利用代表点位预测土壤水分时空分布的方法是可行的,科学调控土壤水库可在一定程度上缓解土壤干层的形成与发展,为区域土壤干层的恢复提供了可能性。
  • 图  1  土壤水分时间变化规律

    白色为观测点位在该时段不存在夹心式干层现象

    Figure  1.  Temporal dynamics of soil moisture

    图  2  六道沟流域观测期内日降水量

    Figure  2.  Daily precipitation during the observational period in the Liudaogou catchment

    图  3  各点位夹心式干层分布特征

    Figure  3.  Sandwiched phenomenon of DSL (dried soil layer) between non-DSLs

    图  4  不同月份土壤水分斯皮尔曼等级相关系数均值

    Figure  4.  The mean of Spearman rank correlation of time series of soil moisture

    图  5  利用不同指标判定土壤水分的时间稳定性

    Figure  5.  The judgement of temporal stability of soil moisture with ITS, MRD and MAE

    图  6  土壤水分实测值与预测值的比较

    Figure  6.  Comparison between measured and simulated values of soil moisture

  • [1] Zhang L, Zhao W, Zhang R, et al. Profile distribution of soil organic and inorganic carbon following revegetation on the Loess Plateau, China[J]. Environmental Science and Pollution Research, 2018, 25: 30301 − 30314. doi: 10.1007/s11356-018-3020-0
    [2] Feng X M, Fu B J, Piao S L, et al. Revegetation in China's Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6(11): 1019 − 1022. doi: 10.1038/nclimate3092
    [3] 邵明安, 贾小旭, 王云强. 黄土高原土壤干层研究进展与展望[J]. 地球科学进展, 2016, 31(1): 14 − 22.
    [4] 郑纪勇, 李裕元, 邵明安, 等. 沟壁侧面蒸发与黄土高原环境旱化关系初探[J]. 中国水土保持科学, 2006, 4(3): 6 − 10. doi: 10.3969/j.issn.1672-3007.2006.03.002
    [5] 张晨成, 邵明安, 王云强. 黄土区坡面尺度不同植被类型下土壤干层的空间分布[J]. 农业工程学报, 2012, 28(17): 102 − 108. doi: 10.3969/j.issn.1002-6819.2012.17.015
    [6] Jia Y H, Li T C, Shao M A. A preliminary investigation of gully edge effect on the distribution pattern of soil moisture across a permanent gully[J]. Journal of Hydrology, 2020, 590: 125288. doi: 10.1016/j.jhydrol.2020.125288
    [7] 陈明玉, 邵明安, 李同川, 等. 黄土高原典型切沟土壤水分时空分布特征及其影响因素[J]. 土壤学报, 2021, 58(2): 381 − 390.
    [8] Zhang C C, Wang Y Q, Shao M A. Controlling gully- and revegetation-induced dried soil layers across a slope-gully system[J]. Science of the Total Environment, 2021, 755: 142444. doi: 10.1016/j.scitotenv.2020.142444
    [9] 董 爽, 李同川, 郭成久, 等. 陕北黄土区流域分水线土壤干层分布[J]. 水科学进展, 2017, 28(6): 811 − 819. doi: 10.14042/j.cnki.32.1309.2017.06.002
    [10] 李玉山. 黄土区土壤水分循环特征及其对陆地水分循环的影响[J]. 生态学报, 1983, 3(2): 91 − 101.
    [11] Jia Y H, Li T C, Shao M A, et al. Disentangling the formation and evolvement mechanism of plants-induced dried soil layers on China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2019, 269-270: 57 − 70. doi: 10.1016/j.agrformet.2019.02.011
    [12] 董爽. 陕北黄土高原地形破碎区土壤干层及有效水时空分布[D]. 沈阳: 沈阳农业大学, 2018.
    [13] Wang Y Q, Shao M A, Shao H B. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China[J]. Agricultural and Forest Meteorology, 2011, 151(1): 437 − 448.
    [14] Wang L, Wang Q, Wei S, et al. Soil desiccation for loess soils on natural and regrown areas[J]. Forest Ecology & Management, 2008, 255: 2467 − 2477.
    [15] Wang Y P, Shao M A, Zhang X C, et al. Soil moisture ecological environment of artificial vegetation on steep slope of loess region in North Shaanxi Province, China[J]. Acta Ecologica Sinica, 2008, 28: 3769 − 3778. doi: 10.1016/S1872-2032(08)60077-3
    [16] Vachaud G, Passerat A, Balabanis P. Temporal stability of spatially measured soil water probability density function[J]. Soil Science Society of America Journal, 1985, 49(4): 822 − 828. doi: 10.2136/sssaj1985.03615995004900040006x
    [17] Gao X D, Wu P T, Zhao X N. et al. Estimating spatial mean soil water contents of sloping jujube orchards using temporal stability[J]. Agricultural Water Management, 2011, 102(1): 66 − 73. doi: 10.1016/j.agwat.2011.10.007
    [18] Duan L X, Huang M B, Li Z W. et al. Estimation of spatial mean soil water storage using temporal stability at the hillslope scale in black locust (Robinia pseudoacacia) stands[J]. Catena, 2017, 156: 51 − 61. doi: 10.1016/j.catena.2017.03.023
    [19] 朱绪超, 邵明安, 朱军涛, 等. 高寒草甸生态系统表层土壤水分时间稳定性研究[J]. 农业机械学报, 2017, 48(8): 212 − 218. doi: 10.6041/j.issn.1000-1298.2017.08.024
    [20] Jia Y H, Shao M A. Temporal stability of soil water storage under four types of revegetation on the northern Loess Plateau of China[J]. Agricultural Water Management, 2013, 117: 33 − 42. doi: 10.1016/j.agwat.2012.10.013
    [21] Jia X X, Shao M A, Zhang C C. et al. Regional temporal persistence of dried soil layer along south-north transect of the Loess Plateau, China[J]. Journal of Hydrology, 2015, 528(528): 152 − 160.
    [22] Zhao Y, Peth S, Wang X Y, et al. Controls of surface soil moisture spatial patterns and their temporal stability in a semi-arid steppe[J]. Hydrological Processes, 2010, 24(18): 2507 − 2519. doi: 10.1002/hyp.7665
    [23] 白 晓, 贾小旭, 邵明安, 等. 黄土高原北部土地利用变化对长期土壤水分平衡影响模拟[J]. 水科学进展, 2021, 32(1): 109 − 119. doi: 10.14042/j.cnki.32.1309.2021.01.011
    [24] Hu W, Shao M A, Reichardt K. Using a New Criterion to Identify Sites for Mean Soil Water Storage Evaluation[J]. Soil Science Society of America Journal, 2010, 74(3): 762 − 773. doi: 10.2136/sssaj2009.0235
    [25] 薛少博, 李 鹏, 于坤霞, 等. 2002-2020年黄土高原土壤水变化及其相关性分析[J]. 水土保持学报, 2021, 35(5): 221 − 226. doi: 10.13870/j.cnki.stbcxb.2021.05.030
    [26] 王 晶, 白清俊, 王欢元, 等. 黄土丘陵沟壑区沟道造地土壤水分时空变异特征[J]. 干旱地区农业研究, 2022, 40(4): 1 − 8. doi: 10.7606/j.issn.1000-7601.2022.04.01
    [27] 陈 伟, 李亚新, 王红阳, 等. 黄土丘陵区坡耕地与撂荒地土壤水分对降雨的响应特征[J]. 生态学报, 2022, 42(1): 332 − 339.
    [28] 王世军, 杨 磊, 段兴武, 等. 黄土高原小流域植被恢复的土壤水分和养分权衡效应研究[J]. 土壤通报, 2022, 52(2): 356 − 365.
    [29] Jia X X, Shao M A, Wei X R, et al. Hillslope scale temporal stability of soil water storage in diverse soil layers[J]. Journal of Hydrology, 2013, 498: 254 − 264. doi: 10.1016/j.jhydrol.2013.05.042
    [30] 单玉琳, 解建仓, 韩霁昌, 等. 黄土高原坡面土壤水分特征及时间稳定性−以延安市九龙泉沟为例[J]. 中国水土保持科学, 2021, 19(6): 1 − 7. doi: 10.16843/j.sswc.2021.06.001
  • 加载中
图(6)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  6
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 录用日期:  2022-12-18
  • 修回日期:  2022-10-23
  • 网络出版日期:  2023-10-21
  • 刊出日期:  2023-10-06

目录

    /

    返回文章
    返回