Analysis of Research Hotspots and Frontiers of the Effects of Nitrogen Deposition on Soil Carbon Cycle-- Based on Citespace Visual Analysis
-
摘要: 近年来,全球大气氮沉降日益加剧,对土壤碳循环产生了不可忽视的影响。关于氮沉降对土壤碳循环的影响已开展了一系列的研究,然而对其响应机制和影响程度方面的认识还存在巨大分歧。运用CiteSpace文献可视化软件,对1991 ~ 2021年Web of Science核心数据库收录的2414篇关于氮沉降对土壤碳循环方面的文献进行数据挖掘,从国家、机构、作者、关键词、突现词等方面进行可视化,以阐明该领域的研究热点与前沿。结果表明:大气氮沉降对土壤碳循环影响的研究美国仍具有较高影响力,但我国在该领域的研究正持续发力,其中以中国科学院大学在该领域的发文数量最多,同时文献涉及方向广,内容丰富。当前,对于氮沉降对土壤碳循环影响的研究热点主要围绕“氮沉降对土壤碳、氮库的影响”“氮沉降对土壤碳、氮耦合循环的影响”“土壤生态环境对氮沉降的响应”这三个主题,氮沉降对土壤碳循环影响的研究前沿更加注重响应机制、氮利用效率和磷限制等方面。
-
关键词:
- Web of Science /
- 氮沉降 /
- 土壤碳循环 /
- 文献计量学 /
- 可视化分析
Abstract: In recent years, global atmospheric nitrogen (N) deposition has been intensifying and has a significant impact on the soil carbon (C) cycle. A series of studies have been conducted on the impact of N deposition on the soil C cycle, however, there are still great differences in the understanding of the response mechanism and the extent of the impact. In this paper, we used CiteSpace literature visualization software to data-mining 2414 papers on N deposition on soil C cycle included in the Web of Science core database from 1991 to 2021, and visualize them in terms of countries, institutions, authors, keywords, and emergent words to elucidate the research hotspots and frontiers in this field. The results showed that the research on the influence of atmospheric N deposition on the soil C cycle was still highly influential in the United States, but China’s research in this field was continuing to gain momentum, with the University of Chinese Academy of Sciences having the largest number of publications in this field, while the literature covered a wide range of directions and was rich in content. In addition, the current research on the influence of N deposition on the soil C cycle is mainly focused on three themes: "Response of soil ecological environment to N deposition", "Effect of N deposition on soil C pool", and "Effect of N deposition on coupling cycle of C and N in soil". The current research frontier on the effects of N deposition on the soil C cycle is more focused on the response mechanisms, N use efficiency, and phosphorus limitation.-
Key words:
- Web of Science /
- Nitrogen deposition /
- Soil carbon cycle /
- Bibliometrics /
- Visual Analysis
-
表 1 主要文献总结
Table 1. Summary of main literature
共被引频次
Co-Cited Count作者
Author文献
Reference期刊
Journal年份
Year聚类号
Cluster number25 Gundersen P et al. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data FOREST ECOLOGY AND MANAGEMENT 1998 #0 19 Nadelhoffer KJ et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests NATURE 1999 #6 19 Dise NB et al. Nitrogen leaching from european forests in relation to nitrogen deposition FOREST ECOLOGY AND MANAGEMENT 1995 #2 16 Stoddard JL et al. Long-term changes in watershed retention of nitrogen - its causes and aquatic consequences ADVANCES IN CHEMISTRY SERIES 1994 #2 16 Galloway JN et al. Nitrogen cycles: past, present, and future BIOGEOCHEMISTRY 2004 #9 16 Aber J et al. Nitrogen saturation in temperate forest ecosystems - Hypotheses revisited BIOSCIENCE 1998 #0 15 Galloway JN et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions SCIENCE 1998 #10 15 Nadelhoffer KJ et al. Sinks for 15n-enriched additions to an oak forest and a red pine plantation ECOLOGICAL APPLICATIONS 1999 #0 15 Fenn ME et al. Nitrogen excess in north american ecosystems: predisposing factors, ecosystem responses, and management strategies ECOLOGICAL APPLICATIONS 1998 #0 14 Vitousek PM et al. Human alteration of the global nitrogen cycle: Sources and consequences ECOLOGICAL APPLICATIONS 1997 #6 表 2 文献数量前10的国家
Table 2. Top 10 countries by the number of publications
排名
Ranking国家
Country发文量
Published
article中介中心性
Betweenness
centrality1 USA(美国) 920 0.11 2 PEOPLES R CHINA(中国) 734 0.03 3 GERMANY(德国) 266 0.32 4 CANADA(加拿大) 212 0.12 5 ENGLAND(英国) 197 0.16 6 FRANCE(法国) 145 0.23 7 SWEDEN(瑞典) 134 0.03 8 AUSTRALIA(澳大利亚) 110 0.08 9 NETHERLANDS(荷兰) 108 0.04 10 SWITZERLAND(瑞士) 95 0.23 表 3 发表论文数量前10的机构
Table 3. Top 10 institutions in terms of number of published papers
排名
Ranking机构
Institution发文量/篇
Published
article中介中心性
Betweenness
centrality1 Chinese Acad Sci(中国科学院) 384 0.07 2 Univ Chinese Acad Sci(中国科学院大学) 165 0.02 3 US Geol Survey(美国地质调查局) 56 0.03 4 Northwest A&F Univ(西北农林科技大学) 55 0.14 5 Peking Univ(北京大学) 47 0.01 6 Univ New Hampshire(新罕布什尔大学) 43 0.04 7 Univ Colorado(科罗拉多大学) 42 0.05 8 Swedish Univ Agr Sci(瑞典农业科学大学) 42 0.03 9 Cornell Univ(美国康奈尔大学) 40 0.04 10 US Forest Serv(美国林业局) 35 0.02 表 4 关键词聚类标签数据表
Table 4. Keyword clustering tag data
聚类号
Cluster number聚类名称
Cluster name聚类大小
Cluster size剪影度
Silhouette平均年份
Mean year聚类标签(LLR)
Cluster label#0 Nitrogen cycling 49 0.941 1999 Nitrogen cycling; nitrogen deposition; carbon cycling; deposition #1 Emission 47 0.9 2000 Emission; dry deposition; nh3; denitrification; basin #2 Carbon dioxide 46 0.865 2006 Carbon dioxide; nitrous oxide; methane; nutrient release; nitrogen fixation #3 Simulated warming 45 0.855 2010 Simulated warming; microbial respiration; tibetan plateau; temperature sensitivity; moso bamboo #4 Litter decomposition 44 0.876 2005 Soil organic matter; cycle; management; nitrogen budget; root biomass #5 Dissolved organic carbon 44 0.798 2008 Soil properties; soil respiration; nitrogen fertilization; net ecosystem productivity; carbon cycle #6 Nutrient cycling 44 0.881 2003 Nutrient cycling; atmospheric deposition; acid deposition; water; organic carbon #7 Soil properties 44 0.865 2009 Dissolved organic carbon; plant diversity; soil solution; ecosystem function; forest soil #8 Soil organic matter 44 0.848 2003 Litter decomposition; nitrogen cycle; ecosystem; quality; nitrogen additions #9 Nitrogen addition 43 0.87 2010 Nitrogen addition; n addition; soil erosion; dissolved organic matter; topsoil removal and addition #10 Climate change 41 0.839 2005 Climate change; climate; elevated CO2; CO2; global warming #11 Carbon sequestration 39 0.906 2004 Norway spruce; nitrate leaching; productivity; coniferous forest; equilibrium #12 Norway spruce 39 0.819 2002 Carbon sequestration; acidic deposition; response; temperate; addition #13 Global change 32 0.855 2011 Microbial biomass; soil nitrogen; organic matter; stoichiometry; phosphatase #14 Microbial biomass 32 0.842 2007 Global change; fluxe; primary productivity; nutrient stoichiometry; atmospheric mercury #15 Mycorrhizal fungi 29 0.927 2011 Nitrate; n-15 pool dilution; critical loads; mediterranean-type ecosystems; gross nitrogen mineralization #16 Nitrate 29 0.961 1998 Mycorrhizal fungi; soil carbon; salmon-derived nutrients; microbial ecology; semiarid grassland #17 Tropical forests 16 0.902 2011 Tropical forests; tropical forest; balance; n-15 tracing model; net primary productivity #18 Grazing intensity 11 0.996 1992 Grazing intensity; simulation; serengeti; competition; ammonium -
[1] Reay D S, Dentener F, Smith P, et al. Global nitrogen deposition and carbon sinks[J]. Nature Geoscience, 2008, 1(7): 430 − 437. doi: 10.1038/ngeo230 [2] 张甘霖, 朱永官, 邵明安. 地球关键带过程与水土资源可持续利用的机理[J]. 中国科学:地球科学, 2019, 49(12): 1945 − 1947. [3] Cheng Y, Wang J, Wang J, et al. Nitrogen deposition differentially affects soil gross nitrogen transformations in organic and mineral horizons[J]. Earth-Science Reviews, 2020, 201: 103033. doi: 10.1016/j.earscirev.2019.103033 [4] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153 − 226. doi: 10.1007/s10533-004-0370-0 [5] Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis[J]. Ecological applications, 2010, 20(1): 30 − 59. doi: 10.1890/08-1140.1 [6] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459 − 462. doi: 10.1038/nature11917 [7] 郑丹楠, 王雪松, 谢绍东, 等. 2010 年中国大气氮沉降特征分析[J]. 中国环境科学, 2014, 34(5): 1089 − 1097. [8] Yu G, Jia Y, He N, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424 − 429. doi: 10.1038/s41561-019-0352-4 [9] Mo J, Zhang W E I, Zhu W, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China[J]. Global Change Biology, 2008, 14(2): 403 − 412. doi: 10.1111/j.1365-2486.2007.01503.x [10] Berg B, Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J]. Environmental Reviews, 1997, 5(1): 1 − 25. doi: 10.1139/a96-017 [11] Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. European journal of soil science, 1999, 50(4): 579 − 590. doi: 10.1046/j.1365-2389.1999.00267.x [12] 白洁冰, 徐兴良, 付 刚, 等. 温度和氮素输入对青藏高原 3 种高寒草地土壤氮矿化的影响[J]. 安徽农业科学, 2011, 39(24): 14698 − 14700. [13] Nottingham A T, Turner B L, Stott A W, et al. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils[J]. Soil Biology and Biochemistry, 2015, 80: 26 − 33. doi: 10.1016/j.soilbio.2014.09.012 [14] 陈超美, 陈 悦, 侯剑华, 等. CiteSpaceⅡ: 科学文献中新趋势与新动态的识别与可视化[J]. 情报学报, 2009, (3): 401 − 421. [15] Gundersen P, Emmett B A, Kjønaas O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX data[J]. Forest Ecology and management, 1998, 101(1-3): 37 − 55. doi: 10.1016/S0378-1127(97)00124-2 [16] Nadelhoffer K J, Emmett B A, Gundersen P, et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature, 1999, 398(6723): 145 − 148. doi: 10.1038/18205 [17] Nadelhoffer K J, Downs M R, Fry B. Sinks for 15N-enriched additions to an oak forest and a red pine plantation[J]. Ecological Applications, 1999, 9(1): 72 − 86. doi: 10.1890/1051-0761(1999)009[0072:SFNEAT]2.0.CO;2 [18] Galloway J N, Schlesinger W H, Levy H, et al. Nitrogen fixation: Anthropogenic enhancement-environmental response[J]. Global biogeochemical cycles, 1995, 9(2): 235 − 252. doi: 10.1029/95GB00158 [19] Olawumi T O, Chan D W M. A scientometric review of global research on sustainability and sustainable development[J]. Journal of cleaner production, 2018, 183: 231 − 250. doi: 10.1016/j.jclepro.2018.02.162 [20] 孙志高, 刘景双, 于君宝, 等. 15N 示踪技术在湿地氮素生物地球化学过程研究中的应用进展[J]. 地理科学, 2005, 25(6): 762 − 768. [21] Addiscott T, Brookes P. What governs nitrogen loss from forest soils?[J]. Nature, 2002, 418(6898): 604 − 604. doi: 10.1038/418604a [22] Lovett G M, Weathers K C, Arthur M A. Control of nitrogen loss from forested watersheds by soil carbon: Nitrogen ratio andtree species composition[J]. Ecosystems, 2002, 5(7): 0712 − 0718. doi: 10.1007/s10021-002-0153-1 [23] Chiwa M, Tateno R, Hishi T, et al. Nitrate leaching from Japanese temperate forest ecosystems in response to elevated atmospheric N deposition[J]. Journal of Forest Research, 2019, 24(1): 1 − 15. doi: 10.1080/13416979.2018.1530082 [24] Schmidt S K, Lipson D A, Ley R E, et al. Impacts of chronic nitrogen additions vary seasonally and by microbial functional group in tundra soils[J]. Biogeochemistry, 2004, 69(1): 1 − 17. doi: 10.1023/B:BIOG.0000031028.53116.9b [25] Zhang T, Chen H Y H, Ruan H. Global negative effects of nitrogen deposition on soil microbes[J]. The ISME journal, 2018, 12(7): 1817 − 1825. doi: 10.1038/s41396-018-0096-y [26] Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon[J]. Nature, 2002, 419(6910): 915 − 917. doi: 10.1038/nature01136 [27] Griepentrog M, Bodé S, Boeckx P, et al. Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions[J]. Global Change Biology, 2014, 20(1): 327 − 340. doi: 10.1111/gcb.12374 [28] de Vries W, Posch M, Simpson D, et al. Modelling long-term impacts of changes in climate, nitrogen deposition and ozone exposure on carbon sequestration of European forest ecosystems[J]. Science of the Total Environment, 2017, 605: 1097 − 1116. [29] Monteith D T, Stoddard J L, Evans C D, et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry[J]. Nature, 2007, 450(7169): 537 − 540. doi: 10.1038/nature06316 [30] Zeng D H, Li L J, Fahey T J, et al. Effects of nitrogen addition on vegetation and ecosystem carbon in a semi-arid grassland[J]. Biogeochemistry, 2010, 98(1): 185 − 193. [31] Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478(7367): 49 − 56. doi: 10.1038/nature10386 [32] Cambardella C A, Elliott E T. Particulate soil organic‐matter changes across a grassland cultivation sequence[J]. Soil science society of America journal, 1992, 56(3): 777 − 783. doi: 10.2136/sssaj1992.03615995005600030017x [33] Zhou X, Wu H, Koetz E, et al. Soil labile carbon and nitrogen pools and microbial metabolic diversity under winter crops in an arid environment[J]. Applied Soil Ecology, 2012, 53: 49 − 55. doi: 10.1016/j.apsoil.2011.11.002 [34] Gifford R M. The global carbon cycle: a viewpoint on the missing sink[J]. Functional Plant Biology, 1994, 21(1): 1 − 15. doi: 10.1071/PP9940001 [35] Malyan S K, Kumar A, Baram S, et al. Role of fungi in climate change abatement through carbon sequestration[M]//Recent advancement in white biotechnology through fungi. Springer, Cham, 2019: 283 − 295. [36] Li S, Du Y, Guo P, et al. Effects of different types of N deposition on the fungal decomposition activities of temperate forest soils[J]. Science of the total environment, 2014, 497: 91 − 96. [37] Seagle S W, McNaughton S J, Ruess R W. Simulated effects of grazing on soil nitrogen and mineralization in contrasting Serengeti grasslands[J]. Ecology, 1992, 73(3): 1105 − 1123. doi: 10.2307/1940184 [38] Vaieretti M V, Cingolani A M, Pérez Harguindeguy N, et al. Effects of differential grazing on decomposition rate and nitrogen availability in a productive mountain grassland[J]. Plant and soil, 2013, 371(1): 675 − 691. [39] 王宏宇, 王晓光. 基于大规模开放学术图谱的研究前沿分析框架[J]. 情报理论与实践, 2021, 44(1): 102 − 109. [40] Gao Q, Bai E, Wang J, et al. Effects of litter manipulation on soil respiration under short-term nitrogen addition in a subtropical evergreen forest[J]. Forest Ecology and Management, 2018, 429: 77 − 83. doi: 10.1016/j.foreco.2018.06.037 [41] Carrara J E, Walter C A, Freedman Z B, et al. Differences in microbial community response to nitrogen fertilization result in unique enzyme shifts between arbuscular and ectomycorrhizal‐dominated soils[J]. Global Change Biology, 2021, 27(10): 2049 − 2060. doi: 10.1111/gcb.15523 [42] Chang R, Zhou W, Fang Y, et al. Anthropogenic nitrogen deposition increases soil carbon by enhancing new carbon of the soil aggregate formation[J]. Journal of Geophysical Research:Biogeosciences, 2019, 124(3): 572 − 584. doi: 10.1029/2018JG004877 [43] Yuan Y, Li Y, Mou Z, et al. Phosphorus addition decreases microbial residual contribution to soil organic carbon pool in a tropical coastal forest[J]. Global Change Biology, 2021, 27(2): 454 − 466. doi: 10.1111/gcb.15407 -