Effects of Additional Biochar Application on the Inter-root Soil Fungal Community of Zanthoxylum bungeanum Maxim
-
摘要:
目的 明确生物质炭施用量对花椒根际真菌群落结构的影响差异及其主控因子。 方法 对不施用生物质炭(CK)以及3个生物质炭施用量递增处理(T1,1.0 t hm−2;T2,1.8 t hm−2;T3,2.6 t hm−2)的花椒根际土壤进行高通量测序、化学性质测定和花椒生长指标监测。 结果 花椒根区施用生物质炭提高了土壤pH、C/N和阳离子交换量,增加了全碳、全磷、全钾、有效磷和速效钾含量。随生物质炭用量的增加,真菌群落Chao 1、ACE和Shannon指数降低,Simpson指数升高;子囊菌门、接合菌门和壶菌门的相对丰度减少,球囊菌门和担子菌门相对丰度增加。属水平分析表明:T2处理极大地增加了花椒根际土壤微生物球囊菌属、被孢霉属和拟青霉属的相对丰度,分别是CK的24.3、3.1和1.4倍。T3处理极大地增加了花椒树高、地径和新梢抽生数,分别是CK的1.7、2.4和2.0倍。因子分析及相关性分析显示:土壤pH、C/N、有效磷、全氮和全碳累计解释了81.2%的群落变化;花椒生长指标与土壤pH、C/N、有效磷、全碳及真菌Simpson呈显著或极显著正相关关系,与Chao 1和Shannon呈极显著负相关关系。 结论 施用生物质炭显著提高了土壤质量,降低了真菌群落丰富度和多样性,增加了球囊菌属、被孢霉属和拟青霉属等有益真菌属的占比。基于花椒促生考虑,施用2.6 t hm−2 生物质炭为推荐施用量;基于有益功能菌的生理作用考虑,施用1.8 t hm−2 生物质炭为推荐施用量。 Abstract:Objective The aims were to clarify the effect of application of biochar on fungal community structure of rhizosphere soil under Zanthoxylum bungeanum Maxim, as well as to reveal its main controlling factors. Method High-throughput sequencing, chemical property determination and monitoring for Zanthoxylum Bungeanum growth indicators were conducted on no application of biochar treatment (CK) and three biochar application treatments with rates of 1.0 t hm−2 (T1), 1.8 t hm−2 (T2) and 2.6 t hm−2 (T3). Result The pH, total carbon, total phosphorus, total potassium, available phosphorus, available potassium, C/N and CEC were increased with the biochar application rates in the rhizosphere soil of Zanthoxylum bungeanum. Fungal community Chao 1, ACE and Shannon index decreased with biochar application rates and vice versa for Simpson index. The relative abundance of Ascomycota, Zygomycota and Chytridiomycota were decreased with increased application rates of biochar and vice versa for the relative abundance of Glomeromycota and Basidiomycota. Genus level analysis showed that T2 treatment greatly increased the relative abundance of Ascosphaera, Mortierella and Paecilomyces by 24.3, 3.1 and 1.4 times respectively compared to CK. T3 treatment greatly increased tree height, ground diameter and number of new shoots by 1.7, 2.4 and 2.0 times respectively. Factor and correlation analyses showed that soil pH, C/N, available phosphorus, total nitrogen and total carbon cumulatively explained 81.2% of the community variation. Soil pH, C/N, effective phosphorus, total carbon and the fungus Simpson showed significant or highly significant positive correlations with this tree growth indicators, but Chao 1 and Shannon showed highly significant negative correlations with its growth indicators. Conclusion Application of biochar from rice straw could significantly improve soil quality, reduce fungal community richness and diversity, and increase the proportion of beneficial fungal genera such as Ascosphaera, Mortierella and Paecilomyces. T3 (biochar 2.6 t hm−2) is the recommended treatment based on the promotion considerations, and T2 (biochar 1.8 t hm−2) is the recommended treatment based on the physiological role of beneficial functional bacteria. -
Key words:
- Biochar /
- Zanthoxylum bungeanum Maxim /
- Rhizosphere soil /
- Fungus community /
- Growth-promoting effect
-
图 5 土壤化学性质参数与真菌群落组成的主成分分析(a)及与真菌群落多样性的冗余分析(b)
TN:全氮; TP:全磷;TK:全钾;TC:全碳;AN:碱解氮;AP:有效磷;AK:速效钾;CEC:阳离子交换量;C/N:碳氮比。
Figure 5. Principal component analyses (PCA) of fungal community composition in soils from different treatments (a), and redundancy analyses (RDA) of the correlations between soil parameters and fungal community diversity (b)
表 1 生物质炭不同用量处理下花椒根际土壤肥力因子分析
Table 1. Analysis of soil fertility factors of Zanthoxylum bungeanum rhizosphere soil under different application rates of biochar
处理
TreatmentpH 全碳(g kg–1)
Total C全氮(g kg–1)
Total N全磷(g kg–1)
Total P全钾(g kg–1)
Total KCK 4.88 ± 0.23 d 9.70 ± 0.26 d 1.48 ± 0.16 a 0.60 ± 0.02 d 11.92 ± 0.87 d T1 5.23 ± 0.05 c 11.52 ± 0.75 c 1.55 ± 0.25 a 0.71 ± 0.11 c 18.33 ± 0.26 c T2 5.46 ± 0.06 b 14.11 ± 1.03 b 1.60 ± 0.12 a 0.98 ± 0.10 b 25.29 ± 0.78 b T3 5.78 ± 0.03 a 17.49 ± 0.99 a 1.67 ± 0.21 a 1.19 ± 0.09 a 28.15 ± 1.03 a 处理
Treatment碱解氮(mg kg–1)
Available N有效磷(mg kg–1)
Available P速效钾(mg kg–1)
Available KC/N 阳离子交换量(cmol kg–1)
CECCK 53.43 ± 5.33 a 1.07 ± 0.02 d 90.22 ± 8.19 d 6.55 ± 0.45 d 8.06 ± 1.00 d T1 55.24 ± 2.02 a 1.22 ± 0.15 c 121.65 ± 34.42 c 7.43 ± 0.39 c 11.18 ± 1.21 c T2 57.63 ± 1.36 a 1.67 ± 0.23 b 180.10 ± 15.22 b 8.82 ± 0.56 b 14.55 ± 1.33 b T3 57.88 ± 3.81 a 2.36 ± 0.21 a 228.06 ± 22.13 a 10.47 ± 0.88 a 18.31 ± 1.81 a 表 2 生物质炭不同施用量处理下花椒根际真菌群落的Read数、丰富度和多样性指数
Table 2. The number of reads, richness and diversity of Zanthoxylum bungeanum rhizosphere soil under different application rates of biochar
处理
TreatmentRead读数
Read number丰富度
Richness多样性指数
Diversity indexChao 1指数
Chao 1 indexACE指数
ACE indexShannon指数
Shannon indexSimpson指数
Simpson indexCK 34607 ± 3220 a 721 ± 41 a 731 ± 55 a 4.48 ± 0.24 a 0.85 ± 0.20 a T1 31341 ± 2598 b 698 ± 48 b 726 ± 43 b 4.38 ± 0.33 b 0.89 ± 0.15 b T2 25437 ± 3016 c 663 ± 36 c 725 ± 61 b 4.23 ± 0.39 c 0.90 ± 0.07 b T3 26201 ± 2344 c 617 ± 32 d 730 ± 72 a 4.17 ± 0.53 c 0.92 ± 0.12 b 注:同列数据后标不同小写字母表示处理间差异显著(P < 0.05),下表同。 表 3 生物质炭不同用量对花椒树高、地径和新梢增长的影响
Table 3. Effects of different amounts of biochar on the growth of height, ground diameter and new shoots of Zanthoxylum bungeanum
处理
Treatment树高增高
Tree height
increased
(cm)地径增粗
Ground diameter
enlargement
(cm)新梢抽生数增量(条)
Number of new
shoot increasedCK 30.3 ± 1.2 b 0.22 ± 0.03 c 5 ± 0 b T1 36.5 ± 3.5 b 0.31 ± 0.05 ab 6 ± 1 ab T2 39.2 ± 4.3 b 0.42 ± 0.04 ab 7 ± 1 ab T3 51.7 ± 2.7 a 0.52 ± 0.03 a 10 ± 2 a 表 4 花椒树高、地径和新梢抽生增长量与土壤化学性质、真菌群落多样性指数的相关性分析
Table 4. Correlation analysis of height, ground diameter and growth amounts of new shoots of Zanthoxylum bungeanum with soil chemical properties and fungal community diversity index
变量
Variables增长量
Amount of growth树高
Tree height地径
Ground diameter新梢抽生数
Number of new shootpH 0.929** 0.978** 0.954** C/N 0.806** 0.921** 0.759* 有效磷 0.906** 0.882** 0.691 全碳 0.975** 0.959** 0.860** 全氮 0.336 0.330 0.182 Chao 1指数 −0.957** −0.955** −0.781* ACE指数 0.022 −0.092 −0.114 Shannon指数 −0.705* −0.759* −0.514 Simpson指数 0.683* 0.535* 0.608* 注:*表示差异显著(P < 0.05),**表示差异极显著(P < 0.01)。 -
[1] 喻阳华, 秦仕忆, 钟欣平. 贵州喀斯特山区花椒林小生境的土壤质量特征[J]. 西南农业学报, 2018, 31(11): 2340 − 2347. [2] Zhang M Y, Wang K L, Liu H Y. Effect of ecological engineering projects on ecosystem services in a karst region: a case study of northwest Guangxi, China[J]. Journal of Cleaner Production, 2018, 183: 831 − 842. [3] 狄彩霞, 王正银. 影响花椒产量和品质的因素[J]. 中国农学通报, 2004, (3): 179 − 181,189. doi: 10.3969/j.issn.1000-6850.2004.03.060 [4] 盛玉钰, 丛 静, 卢 慧, 等. 神农架国家公园林线过渡带土壤真菌多样性[J]. 生态学报, 2018, 38(15): 5322 − 5330. [5] Chen J H, Liu X Y, Zheng J W, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33 − 44. doi: 10.1016/j.apsoil.2013.05.003 [6] 李双喜. 秸秆生物质炭对菜田土壤微生物、理化性质及青菜生长的影响[J]. 上海农业学报, 2017, 33(4): 48 − 54. [7] 黄 韡, 吴承祯, 钱莲文. 生物质炭对土壤和土壤微生物影响的研究进展[J]. 武夷学院学报, 2014, 26(2): 7 − 11. [8] 顾美英, 刘洪亮, 李志强, 等. 新疆连作棉田施用生物炭对土壤养分及微生物群落多样性的影响[J]. 中国农业科学, 2014, 47(20): 4128 − 4138. doi: 10.3864/j.issn.0578-1752.2014.20.021 [9] Kolb S E, Fermanich K J, Dornbush M E. Effect of charcoal quantity on microbial biomass and activity in temperate soils[J]. Soil Science Society of America Journal, 2009, 73(4): 1173 − 1181. doi: 10.2136/sssaj2008.0232 [10] Zwieten L V, Kimberimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil. 2010, 327(1-2): 235-246. [11] Enders A, Hanley K, Whitman T, et al. Characterization of biochars to evaluate recalcitrance and agronomic performance[J]. Bioresource Technology. 2012, 114: 644-653. [12] Masto R E, Kumar S, Rout T K, et al. Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity[J]. Catena. 2013, 111: 64-71. [13] 侯建伟, 邢存芳, 邓晓梅, 等. 花椒园土壤养分质量比特征对秸秆生物质炭类型与施用量的响应[J]. 西南师范大学学报(自然科学版), 2021, 46(2): 80 − 85. [14] Jin H. Characterization of microbial life colonizing biochar and biochar-amended soil in Ithaca [D]. New York: Cornell University, 2010. [15] 鲍士旦. 土壤农化分析(第三版) [M]. 中国农业科技出版社, 北京. 2007, 30-106. [16] 李发虎, 李 明, 刘金泉, 等. 生物炭对温室黄瓜根际真菌丰度和根系生长的影响[J]. 农业机械学报, 2017, 48(4): 265 − 270 + 341. doi: 10.6041/j.issn.1000-1298.2017.04.034 [17] Banerjee S, Kirkby C A, Schmutter D, et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil[J]. Soil Biology and Biochemistry, 2016, 97: 188 − 198. doi: 10.1016/j.soilbio.2016.03.017 [18] Samonin V V, Elikova E E. A study of the adsorption of bacterial cells on porous materials[J]. Microbiology, 2004, 73: 696 − 701. doi: 10.1007/s11021-005-0011-1 [19] 王丹丹, 杨泽平, 赵 远, 等. 生物炭对施粪肥土壤中根际真菌群落多样性及相互作用的影响[J]. 环境科学, 2018, 39(11): 5163 − 5169. [20] 梁 桓, 索全义, 侯建伟, 等. 不同炭化温度下玉米秸秆和沙蒿生物炭的结构特征及化学特性[J]. 土壤, 2015, 47(5): 886 − 891. [21] Sun D, Jun M, Zhang W. Implication of temporal of microbial abundance and nutrients to soil fertility under biochar application-field experiments conducted in a brown soil cultivated with soybean, north China[J]. Advances in Environmental Science an Engineering, 2012, 1(23): 384 − 394. [22] Gomez J D, Denef K, Stewart C E. Biochar addition rate influences soil microbial abundance and activity in temperate soil[J]. European Journal of Soil Science, 2014, 65(1): 28 − 39. doi: 10.1111/ejss.12097 [23] 盖霞普, 翟丽梅, 王洪媛, 等. 生物炭对土壤微生物量及其群落结构的影响[J]. 沈阳农业大学学报, 2017, 48(4): 399 − 410. [24] 陈义轩, 宋婷婷, 方 明, 等. 四种生物炭对潮土土壤微生物群落结构的影响[J]. 农业环境科学学报, 2019, 38(2): 394 − 404. doi: 10.11654/jaes.2018-0966 [25] 陈泽斌, 高 熹, 王定斌, 等. 生物炭不同施用量对烟草根际土壤微生物多样性的影响[J]. 华北农学报, 2018, 33(1): 224 − 232. doi: 10.7668/hbnxb.2018.01.032 [26] 郭军成. 季节性雪被对川西北亚高山草甸土壤真菌遗传特性的影响[D]. 四川: 四川农业大学, 2012 [27] Van Wees S C, Van D E S, Pieterse C M. Plant immune responses triggered by beneficial microbes[J]. Current Opinion in Plant Biology, 2008, 11(4): 443 − 448. doi: 10.1016/j.pbi.2008.05.005 [28] Crow W T. Effects of a commercial formulation of Paecilomyces lilacinus strain 251 on overseeded bermudagrass infested with Belonolaimus longicaudatus[J]. Journal of Nematology, 2013, 45(3): 223 − 227. [29] 王义祥, 黄家庆, 叶 菁, 等. 生物炭对酸化茶园土壤性状和真菌群落结构的影响[J]. 茶叶科学, 2021, 41(03): 419 − 429. doi: 10.3969/j.issn.1000-369X.2021.03.012 [30] 阎海涛, 殷全玉, 丁松爽, 等. 生物炭对褐土理化特性及真菌群落结构的影响[J]. 环境科学, 2018, 39(5): 2412 − 2419. [31] Ghanbarzadeh B, Safaie N, Goltapeh E M. Antagonistic activity and hyphal interactions of Trichoderma spp. against Fusarium proliferatum and F. oxysporum in vitro[J]. Archives of Phytopathology and Plant Protection, 2014, 47: 1979 − 1987. doi: 10.1080/03235408.2013.864506 [32] 谭悠久. 毛壳科 Chaetomiaceae 分类及分子系统发育研究[D]. 杨凌: 西北农林科技大学, 2005. -