Soil Aggregate Stability and the Variation in Organic Carbon Content of Pedogenic Horizons in Typical Paddy Red Earth
-
摘要:
目的 探究土壤团聚体组成及其稳定性对土壤有机碳(SOC)的储存与周转的影响机制。 方法 以江西鹰潭孙家典型红壤小流域内不同坡位稻田红壤发生层土壤为研究对象,分析了机械稳定性团聚体(MSA)、水稳定性团聚体(WSA)比例及其有机碳含量、团聚体破碎率(PAD)、平均重量直径(MWD)、几何平均重量直径(GMD)及分形维数(D)等指标的剖面变化差异,并借助于结构方程模型(SEM)探讨了各指标间的相关关系。 结果 不同坡位稻田红壤各发生层的MSA比例以10 ~ 5 mm所占比例最高(27.6% ~ 87.6%),而< 0.25 mm所占比例最低(1.59% ~ 15.3%);以< 0.25 mm WSA所占比例最高(3.06% ~ 70.1%),5 ~ 2 mm WSA所占比例最低(0.17% ~ 20.4%)。稻田红壤发生层中团聚体碳(SOCa)均随着土壤发生层深度的增加先迅速降低后缓慢降低;其中,2 ~ 0.25 mm SOCa对SOC的贡献率(7.53% ~ 76.7%)显著高于其它粒级团聚体。PAD、MWD、GMD及D均随发生层深度增加先降低后缓慢增加,但随坡位降低显著增加。SEM分析结果表明,土壤pH、游离铁铝氧化物含量及WSA比例是影响稻田红壤SOC的重要因子。 结论 孙家小流域内典型稻田各发生层团聚体稳定性及有机碳含量主要受土层深度及坡位的共同影响,即发生层深度的增加使团聚体稳定性及有机碳含量显著降低,这一结果可以为坡耕地稻田剖面有机碳库管理提供科学依据。 Abstract:Objective The paper aimed to explore the influence mechanism of soil aggregate composition and stability on soil organic carbon storage and turnover. Methods The soil of red earth generation layer in paddy fields with different slope sites in the typical red earth watershed of Sunjia in Yingtan, Jiangxi Province, was taken as the research object. The profile variation differences of mechanical stability aggregates (MSA), water stability aggregates (WSA) and soil organic carbon (SOC) content, percentage of aggregate disruption (PAD), mean weight diameter (MWD), geometric mean weight diameter (GMD) and fractal dimension (D) were analyzed. The correlations among those indices were discussed by means of structural equation model (SEM). Result The proportion of MSA in each horizon of red earth in different slope sites was the highest in 10-5 mm (27.6%-87.6%), and the lowest in < 0.25 mm (1.59%-15.3%). The proportion of < 0.25 mm WSA was the highest (3.06%-70.1%), and the proportion of 5-2 mm WSA was the lowest (0.17%-20.4%). The SOC content of aggregate (SOCa) in pedogenic horizons of red paddy field decreased rapidly at first and then slowly with the increase of soil horizons depth. Among them, the contribution rate (7.53%-76.7%) of 2-0.25 mm SOCa to SOC is significantly higher than those of other size aggregates. The PAD, MWD, GMD and D all decreased first and then increased slowly with the increase of formation depth, but increased significantly with the decrease of slope site. The analysis of SEM showed that soil pH, free Fe/Al oxide content and WSA proportion were the important factors affecting SOC in paddy red earth. Conclusion The aggregate stability and SOC content of each horizon in the typical paddy field in Sunjia small watershed are mainly affected by soil depth and slope site, that is, the increase of horizon depth significantly reduces the aggregate stability and SOC content. This result can provide a scientific basis for the management of soil organic carbon pool in the profile of sloping paddy field. -
表 1 不同坡位稻田红壤发生层划分与描述
Table 1. Division and description of the pedogenic horizon in red paddy fields at different slope sites
坡位
Slope site剖面代码
Profile code海拔
Altitude (m)深度
Depth (cm)发生层
Pedogenic horizon描述
Profile description坡上 MP-T 46 0 ~ 20 Ap1 团粒 20 ~ 25 Ap2 块状 25 ~ 32 Bw1 弱块状 32 ~ 46 Bw2 块状 46 ~ 62 Br1 块状 62 ~ 90 Br2 块状 90 ~ 110 Cr 无结构 坡中 MP-M 44 0 ~ 18 Ap1 团粒 18 ~ 23 Ap2 块状 23 ~ 38 Br1 块状 38 ~ 50 Br2 块状 50 ~ 60 Br3 块状 60 ~ 85 BC 弱块状 85 ~ 110 C 无结构 坡下 MP-B 42 0 ~ 18 Ap1 团粒 18 ~ 23 Ap2 块状 23 ~ 40 Br1 块状 40 ~ 58 Br2 块状 58 ~ 63 Bw 弱块状 63 ~ 80 BC 无结构 80 ~ 100 Cr1 无结构 100 ~ 110 Cr2 无结构 表 2 不同坡位稻田红壤剖面发生层基本理化性质
Table 2. Basic physicochemical properties of the pedogenic horizon in red paddy field at different slope sites
剖面
Profile发生层
HorizonBD pHKCl SOC a-Fe2O3 a-Al2O3 f-Fe2O3 f-Al2O3 g cm–3 g kg–1 MP-T Ap1 0.76 Bd 3.97 Bd 30.3 Ba 4.63 Ac 4.64 Ab 24.4 Af 10.3 Ad Ap2 1.66 Aa 4.20 Aa 4.39 Bd 1.86 Cf 2.31 Cg 37.9 Ad 8.90 Ce Bw1 1.65 a 4.23 a 3.85 e 2.75 e 2.50 f 36.0 e 8.87 e Bw2 1.33 b 4.20 a 4.57 d 4.60 c 3.61 d 40.7 c 11.9 c Br1 1.14 c 4.02 c 5.38 c 3.85 d 3.42 e 38.7 d 11.6 c Br2 1.30 b 4.13 b 6.01 b 5.69 b 4.09 c 50.1 b 15.0 b Cr 1.20 bc 3.81 e 6.04 b 8.38 a 7.71 a 63.5 a 19.2 a MP-M Ap1 0.82 ABd 4.03 Ac 28.1 Ca 2.96 Ce 4.51 ABb 22.8 Bf 10.1 Ae Ap2 1.54 Ba 4.14 Bb 13.5 Ab 3.03 Bd 4.14 Ac 33.5 Bd 10.9 Ad Br1 1.52 a 4.19 a 6.60 d 3.51 c 3.67 d 41.8 c 12.4 c Br2 1.37 b 4.03 c 7.20 c 2.78 f 2.91 e 28.4 e 8.18 f Br3 1.25 c 4.21 a 6.40 d 2.51 g 2.86 e 34.4 d 9.77 e BC 1.17 c 4.21 a 5.97 e 3.76 b 4.42 b 55.0 b 16.8 b C 1.27 bc 4.06 c 5.44 f 7.37 a 7.36 a 58.2 a 18.9 a MP-B Ap1 0.88 Ae 3.91 Cf 32.9 Aa 3.68 Be 4.42 Bd 18.1 Cg 7.68 Bf Ap2 1.32 Cb 3.92 Cef 14.3 Ab 3.56 Af 3.94 Be 31.1 Cf 9.56 Be Br1 1.32 b 3.94 e 7.69 c 3.47 g 3.61 f 49.4 d 11.7 d Br2 1.43 a 4.08 d 5.89 e 4.26 d 3.32 g 39.1 e 10.1 e Bw 1.23 bc 4.50 a 6.71 d 3.42 g 4.46 d 52.7 c 17.5 c BC 1.13 cd 4.39 b 4.25 f 5.14 b 7.89 a 60.7 a 22.5 a Cr1 1.13 c 4.14 c 5.44 e 4.53 c 6.40 c 58.0 b 20.3 b Cr2 1.17 cd 4.10 d 4.66 f 5.98 a 7.68 b 60.4 a 21.0 b 注:相同小写字母表示同一剖面不同发生层间差异不显著(P < 0.05),相同大写字母表示不同剖面同一发生层间差异不显著(P < 0.05)。BD:土壤容重;SOC:土壤有机碳;a-Fe2O3:非晶质氧化铁;a-Al2O3:非晶质氧化铝;f-Fe2O3:游离态氧化铁;f-Al2O3:游离态氧化铝。 表 3 不同坡位稻田红壤发生层土壤团聚体稳定性
Table 3. Soil aggregate stability of pedogenic horizons in red paddy fields at the different slope sites
样地
Sample plot发生层
Pedogenic horizonPAD MWD GMD 分形维数
D% mm MP-T Ap1 5.74 e 5.97 a 4.21 a 2.63 c Ap2 58.6 c 0.84 c 0.31 c 2.87 a Bw1 62.4 b 0.47 d 0.26 c 2.87 a Bw2 57.9 c 0.54 d 0.30 c 2.83 b Br1 66.3 a 0.43 d 0.24 c 2.88 a Br2 59.8 bc 0.54 d 0.29 c 2.84 b Cr 13.8 d 1.32 b 0.95 b 2.40 d MP-M Ap1 5.91 f 5.79 a 3.95 b 2.64 c Ap2 5.87 f 5.92 a 4.18 a 2.61 d Br1 33.7 c 1.33 c 0.62 d 2.69 b Br2 60.2 b 0.70 e 0.30 e 2.86 a Br3 67.2 a 0.47 f 0.25 e 2.88 a BC 30.7 d 0.97 d 0.59 d 2.60 c C 12.5 e 2.18 b 1.24 c 2.46 e MP-B Ap1 1.20 e 6.27 b 5.05 b 2.46 f Ap2 1.49 e 6.70 a 5.71 a 2.51 e Br1 28.6 c 2.15 d 0.88 d 2.68 bc Br2 58.1 a 0.58 g 0.30 e 2.84 a Bw 34.5 b 0.98 f 0.50 d 2.72 b BC 30.6 bc 1.27 e 0.62 d 2.69 bc Cr1 27.6 c 1.00 f 0.58 d 2.66 c Cr2 18.6 d 2.31 c 1.12 c 2.58 d 注:相同小写字母表示同一剖面不同发生层间差异不显著(P < 0.05)。 表 4 稻田红壤发生层中各粒级团聚体有机碳对土壤总有机碳的贡献率
Table 4. The contribution rate of aggregate-associated organic carbon to soil total organic carbon in pedogenic horizons of red paddy fields
样地
Sample plot发生层
Pedogenic horizon团聚体粒级(mm)
Aggregate size10 ~ 5 5 ~ 2 2 ~ 0.25 < 0.25 MP-T Ap1 77.0 a 6.51 b 12.10 e 4.41 e Ap2 6.35 b 2.61 c 36.23 c 54.81 c Bw1 0.00 2.70 c 36.03 c 61.27 b Bw2 0.00 0.81 de 40.44 b 58.75 b Br1 0.00 0.31 e 31.90 d 67.79 a Br2 0.00 1.62 cd 39.14 bc 59.24 b Cr 0.00 15.8 a 67.48 a 16.72 d MP-M Ap1 70.3 a 9.19 b 13.73 f 6.76 f Ap2 73.1 a 7.01 c 13.64 f 6.28 f Br1 11.8 b 4.09 d 54.80 a 29.28 d Br2 6.07 c 2.17 e 46.26 d 45.50 b Br3 1.32 d 1.30 e 35.96 e 61.42 a BC 0.75 d 3.81 d 61.24 a 34.20 c C 9.47 b 19.1 a 49.39 b 22.06 e MP-B Ap1 78.0 b 11.2 a 8.70 d 2.13 e Ap2 84.7 a 6.18 bc 6.69 d 2.38 e Br1 22.4 c 6.77 b 46.88 c 23.90 d Br2 0.00 4.19 d 46.77 c 49.04 a Bw 1.84 ef 4.04 d 54.56 c 39.58 b BC 3.65 e 7.53 b 49.66 a 39.16 b Cr1 1.46 ef 4.47 cd 60.57 a 33.50 c Cr2 12.5 d 11.9 a 50.93 bc 24.71 d 注:相同小字字母表示同一剖面不同发生层间差异不显著(P < 0.05)。 表 5 双因素方差分析
Table 5. Two factors’ analysis of variance
影响因素
Influencing factor结果
Result水稳性团聚体内有机碳含量(SOCa, g kg–1)
Organic carbon content of water stable aggregate土壤有机碳
SOC
(g kg–1)10 ~ 5 mm 5 ~ 2 mm 2 ~ 0.25 mm < 0.25 mm 坡位 III 类平方和/SS 308.4 339.8 163.3 34.0 144.2 自由度/df 2 2 2 2 2 均方/MS 154.2 169.8 81.7 17.0 72.1 F值 3.44 4.21 2.18 1.89 2.60 P值 0.04 0.02 0.13 0.16 0.09 发生层深度 III 类平方和/SS 3249.9 4017.8 4631.6 1061.1 3079.8 自由度/df 7 7 7 7 7 均方/MS 464.3 574.0 661.7 151.0 440.0 F值 10.4 14.2 17.6 16.9 15.8 P值 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 -
[1] 祝贞科, 肖谋良, 魏 亮, 等. 稻田土壤固碳关键过程的生物地球化学机制及其碳中和对策[J]. 中国生态农业学报(中英文), 2021,DOI: 10.12357/cjea.20210748. [2] 马 蓓, 周 萍, 童成立, 等. 亚热带丘陵区红壤不同土地利用方式下土壤有机碳的变化特征[J]. 农业现代化研究, 2017, 38(1): 176 − 181. [3] 马 原, 迟美静, 张玉玲, 等. 黑土旱地改稻田土壤水稳性团聚体有机碳和全氮的变化特征[J]. 中国农业科学, 2020, 53(08): 1594 − 1605. [4] Zhao Z H, Gao S F, Lu C Y, et al. Effects of different tillage and fertilization management practices on soil organic carbon and aggregates under the rice–wheat rotation system[J]. Soil & Tillage Research, 2021: 212. doi: 10.1016/j.still.2021.105071 [5] 胡丹丹, 李 浩, 宋惠洁, 等. 长期施肥条件下红壤有机碳化学结构与团聚体稳定性的关系[J]. 土壤通报, 2022, 53(1): 152 − 159. doi: 10.19336/j.cnki.trtb.2020122902 [6] 张 君, 刘目兴, 易 军, 等. 不同植稻年限土壤剖面基本性质与水-氮分布的关系[J]. 土壤, 2019, 51(06): 1188 − 1195. [7] Cornelia R, Ingrid K K. Deep soil organic matter-a key but poorly understood component of terrestrial C cycle[J]. Plant and Soil, 2011, 338(1/2): 143 − 158. [8] Salom C, Nunan N, Pouteau V, et al. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms[J]. Global Change Biology, 2010, 16(1): 416 − 426. doi: 10.1111/j.1365-2486.2009.01884.x [9] Lyu M, Xie J S, Ukonmaanaho L, et al. Land use change exerts a strong impact on deep soil C stabilization in subtropical forests[J]. Journal of Soils and Sediments, 2016, 17(9): 2305 − 2317. [10] Li C H, Li Y, Tang L S. The effects of long-term fertilization on the accumulation of organic carbon in the deep soil profile of an oasis farmland[J]. Plant and Soil, 2013, 369(1/2): 645 − 656. [11] Tsui C C, Chen Z S, Hsieh C F. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan[J]. Geoderma, 2004, 123(1): 131 − 142. [12] 李禹江, 张 荣, 王 琴, 等. 坡向和坡位对夹金山灌丛土壤团聚体稳定性的影响[J]. 云南大学学报(自然科学版), 2022, 44 (3): 522 − 532. [13] 徐 曼, 余 泺, 王富华, 等. 紫色土旱坡地不同坡位土壤有机碳组分含量对施肥管理的响应[J]. 环境科学, 2021, 42(11): 5491 − 5499. doi: 10.13227/j.hjkx.202103097 [14] 高 冉, 赵勇钢, 刘小芳, 等. 黄土丘陵区人工柠条种植年限和坡位对土壤团聚体稳定性的影响[J]. 生态学报, 2020, 40(9): 2964 − 2974. [15] Yang Y H, Wu J C, Zhao S W, et al. Effects of long-term super absorbent polymer and organic manure on soil structure and organic carbon distribution in different soil layers[J]. Soil & Tillage Research, 2021: 206. doi: 10.1016/j.still.2020.104781 [16] Li S, Xiao Y, Li Q, et al. Vertical dynamics of soil organic carbon and its influence on Chengdu Plain paddy soils from the 1980s to the 2010s[J]. Archives of Agronomy and Soil Science, 2019, 65(11): 1586 − 1598. [17] 李 珊, 李启权, 王昌全, 等. 成都平原区水稻土有机碳剖面分布特征及影响因素[J]. 环境科学, 2018, 39(07): 3365 − 3372. [18] 依艳丽. 土壤物理研究法[M]. 北京: 北京大学出版社, 2009: 55 − 62. [19] 杨金玲, 李德成, 张甘霖, 等. 土壤颗粒粒径分布质量分形维数和体积分形维数的对比[J]. 土壤学报, 2008, (03): 413 − 419. doi: 10.3321/j.issn:0564-3929.2008.03.005 [20] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2007: 30-34. [21] 王志强, 刘 英, 杨文亭, 等. 稻田复种轮作休耕对土壤团聚体分布及稳定性的影响[J]. 土壤学报, 2018, 55(5): 1143 − 1155. doi: 10.11766/trxb201712220590 [22] 魏亚飞, 王 辉, 谭 帅, 等. 套种对南方红壤坡耕地经济果园土壤团聚体分布及稳定性的影响[J]. 应用生态学报, 2020, 31(05): 1617 − 1624. [23] 钱 婧, 张丽萍, 王文艳. 红壤坡面土壤团聚体特性与侵蚀泥沙的相关性 [J]. 生态学报, 2018, 38(5): 1590-1599. [24] 胡旭凯, 陈居田, 朱利霞, 等. 干湿交替对土壤团聚体特征的影响[J]. 中国农业科技导报, 2021, 23(02): 141 − 149. [25] 刘 艳, 马茂华, 吴胜军, 等. 干湿交替下土壤团聚体稳定性研究进展与展望[J]. 土壤, 2018, 50(05): 853 − 865. doi: 10.13758/j.cnki.tr.2018.05.001 [26] 李晓丽, 王成宝, 杨思存, 等. 深松深度对灌耕灰钙土团聚体分布及稳定性的影响[J]. 中国土壤与肥料, 2021, (03): 9 − 17. doi: 10.11838/sfsc.1673-6257.20086 [27] 马东方, 袁再健, 吴新亮, 等. 华南花岗岩侵蚀区不同植被类型坡面土壤有机碳分布和团聚体稳定性[J]. 水土保持学报, 2020, 34(05): 137 − 144. [28] 陈春兰, 陈安磊, 魏文学, 等. 长期施肥对红壤稻田剖面土壤碳氮累积的影响[J]. 水土保持研究, 2021, 28(02): 14 − 20. doi: 10.13869/j.cnki.rswc.2021.02.003 [29] 李忠佩, 张桃林, 陈碧云, 等. 红壤稻田土壤有机质的积累过程特征分析[J]. 土壤学报, 2003, (03): 344 − 352. doi: 10.3321/j.issn:0564-3929.2003.03.004 [30] 南雅芳, 郭胜利, 张彦军, 等. 坡向和坡位对小流域梯田土壤有机碳, 氮变化的影响[J]. 植物营养与肥料学报, 2012, 18(003): 595 − 601. [31] 陈 曦, 王改玲, 刘焕焕, 等. 黄土高原吕梁山不同撂荒年限土壤团聚体稳定性及有机碳分布特征[J]. 土壤, 2021, 53(2): 375-382. [32] 赵友朋, 孟苗婧, 张金池, 等. 不同林地类型土壤团聚体稳定性与铁铝氧化物的关系[J]. 水土保持通报, 2018, 38(04): 75-81 + 86. [33] 王小红, 杨智杰, 刘小飞, 等. 中亚热带山区土壤不同形态铁铝氧化物对团聚体稳定性的影响[J]. 生态学报, 2016, 36(9): 2588 − 2596. [34] 唐 贤, 黄伟濠, 卢 瑛, 等. 广东省赤红壤区土壤团聚体有机碳和铁氧化物特征及稳定性[J]. 水土保持学报, 2021, 35(02): 200 − 209. [35] Ou Y, Rousseau A N, Wang L X, et al. Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors—A case study of the black soil region of northeastern China[J]. Agriculture, Ecosystems and Environment, 2017, 245: 22 − 31. doi: 10.1016/j.agee.2017.05.003 [36] 王 兴, 祁剑英, 井震寰, 等. 长期保护性耕作对稻田土壤团聚体稳定性和碳氮含量的影响[J]. 农业工程学报, 2019, 35(24): 121 − 128. doi: 10.11975/j.issn.1002-6819.2019.24.015 [37] Cao S, Zhou Y Z, Zhou Y Y, et al. Soil organic carbon and soil aggregate stability associated with aggregate fractions in a chronosequence of citrus orchards plantations[J]. Journal of Environmental Management, 2021: 293. doi: 10.1016/j.jenvman.2021.112847 [38] Wang X, Qi J Y, Zhang X Z, et al. Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system[J]. Soil & Tillage Research, 2019: 194. doi: 10.1016/j.still.2019.104339 [39] Chen Z D, Ti J S, Chen F. Soil aggregates response to tillage and residue management in a double paddy rice soil of the Southern China[J]. Nutrient Cycling in Agroecosystems, 2017, 109(2): 103 − 114. doi: 10.1007/s10705-017-9864-8 [40] Tang X Y, Liu S G, Liu J X, et al. Effects of vegetation restoration and slope positions on soil aggregation and soil carbon accumulation on heavily eroded tropical land of Southern China[J]. Journal of Soils and Sediments, 2010, 10(3): 505 − 513. doi: 10.1007/s11368-009-0122-9 [41] Gemma T S, Schulte, Lanigan R P. O, et al. Clay illuviation provides a long-term sink for C sequestration in subsoils[J]. Scientific Reports, 2017: 7. doi: 10.1038/srep45635 [42] 王 萍, 王少先, 夏文建, 等. 稻田湿地土壤碳固定研究进展[J]. 江西农业学报, 2014, 26(01): 77 − 82 + 85. doi: 10.3969/j.issn.1001-8581.2014.01.021 [43] 马麟英, 梁月兰, 韦国钧, 等. 东兰县林地土壤有机质含量与土壤容重的相关性分析[J]. 湖北农业科学, 2014, 53(01): 59 − 62. doi: 10.3969/j.issn.0439-8114.2014.01.016 -