Research Progress of Microalgae Polysaccharides and Their Derivatives in Agriculture
-
摘要: 微藻是单细胞光合生物,具有光合作用效率高、环境适应能力强、生长周期短等特点。微藻多糖是广泛存在于微藻中的一种天然大分子物质,不仅能够促进作物生长,提高作物抗逆性,还可以改善土壤理化性质,调节土壤微生物群落,是植物生物刺激剂的潜在来源。然而,微藻多糖在农业领域并未得到广泛的应用和开发。本文就微藻多糖的合成途径、生化组成、促生和抗逆作用机理及其对土壤改善作用等方面内容进行了综述,以期为微藻多糖的规模化制备及农业应用提供一定的科学理论依据。Abstract: Microalgae is a unicellular photosynthetic organism with the characteristics of high photosynthetic efficiency, strong environmental adaptability and short growth cycle. Microalgae polysaccharides are natural macromolecular substances widely existing in microalgae. They can not only promote crop growth, improve crop resistance, but also improve soil physicochemical properties, regulate soil microbial communities. They are also a potential source of plant bio-stimulants. However, microalgae polysaccharides have not been widely used and developed in agriculture. In this paper, the biosynthesis pathway, biochemical composition, growth-promoting and anti-stress mechanism of microalgae polysaccharides and their effects on soil improvement were reviewed. The aim is to provide a scientific and theoretical basis for large-scale preparation and agricultural application of microalgae polysaccharides.
-
Key words:
- Microalgae polysaccharides /
- Bio-stimulant /
- Plant growth /
- Stress resistance /
- Soil improvement
-
图 1 微藻中多糖生物合成途径的示意图[33]
GA3P:3-磷酸甘油醛;G6P:葡糖-6-磷酸;PGM:葡萄糖磷酸变位酶;G1P:葡糖-1-磷酸;UPP:UDP-焦磷酸化酶;UDP-Glc:尿苷二磷酸葡萄糖; BGS:β-1,3-葡聚糖合成酶;TGS:1,6-β-转糖苷酶;虚线表示可能的合成途径
Figure 1. Schematic representation of the polysaccharide biosynthetic pathway in microalgae.
图 2 微藻多糖对植物的生物刺激作用[51]
Figure 2. Biological stimulation of microalgae polysaccharide on plants
图 3 植物利用多糖激发子诱导的多种防御机制[51]
Figure 3. Various defense mechanisms induced by polysaccharide elicitors in plants
表 1 一些常见微藻多糖(胞内或胞外多糖)的组成
Table 1. The composition of some common microalgae polysaccharides(intracellular or extracellular polysaccharides)
物种
Species海藻糖
Fuc鼠李糖
Rha阿拉伯糖
Ara半乳糖
Gal葡萄糖
Glu甘露糖
Man果糖
Fru木糖
Xyl核糖
Rib糖醛酸
UA参考文献
references绿藻(Green Microalgae) 蛋白核小球藻 (Chlorella pyrenoidosa) + + + + − + + + + − [35] 莱茵衣藻 (Chlamydomonas reinhardtii) − + − + d + − − − − [36] 杜氏盐藻 (Dunaliella salina) − − − + + − + + − − [37] 杜氏盐藻 (Dunaliella tertiolecta) − + − + d + − + − − [38] 铜绿紫球藻 (Porphyridium aerugineum) − − + + + + − + + + [39] 绿球藻 (Chlorococcum sp.) + − − + d + − + + − [40] 蓝藻(Cyanobacteria) 极大螺旋藻 (Spirulina maxima) + + − + d + − + − + [41] 念珠藻 (Nostoc sp.) − − − − − d − + − − [42] 颤藻 (Oscillatoria sp.) − − − − d − − + + − [42] 粘球藻(Gloeocapsa sp.) + + + + d + + d + + [43] 鞘丝藻 (Leptolyngbya sp.) + + + + + + + + + + [43] 鱼腥藻 (Anabaena augstumalis) + + + + d − − + + + [44] 集胞藻 (Synechocystis aquatilis) + + − − d − − + − + [44] 布朗葡萄藻 (Botryococcus braunii) + + + d − − − − − + [45] 爪哇伪枝藻 (Scytonema javanicum) + + + d d d − + − + [46] 微鞘藻 (Microcoleus vaginatus) + + + d d d − + − + [46] 单歧蓝藻 (Tolypothrix tenuis) + + + + d + − − − − [47] 微囊藻 (Microcystis sp. ) + + − + − − − + − + [48] 注: + 检测到, − 无/未检测到; d 主要糖类 -
[1] 杜志强. 微生物多糖生物活性的研究进展[C]. 2011生物医学与工程国际会议论文集. Bali Island: International Industrial Electronic, 2011: 120-121. [2] 李嫄媛. 紊流扰动下典型藻种胞外多糖组成及其生物力学特性研究[D]. 重庆: 重庆大学, 2016. [3] Ashraf M, Hasnain S, Berge O, et al. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress[J]. Biology and Fertility of Soils, 2004, 40(3): 157 − 162. [4] Paul B K, Vanlauwe B, Ayuke F, et al. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity[J]. Agriculture Ecosystems and Environment, 2013, 164(Complete): 164,14 − 22. [5] Nisha R, Kaushik A, Kaushi C P. Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil[J]. Geoderma, 2007, 138(1-2): 49 − 56. doi: 10.1016/j.geoderma.2006.10.007 [6] 陆开形, 唐建军, 蒋德安. 藻类富集重金属的特点及其应用展望[J]. 应用生态学报, 2006, 17(1): 118 − 122. doi: 10.3321/j.issn:1001-9332.2006.01.024 [7] Priyadarshani I, Rath B. Commercial and industrial applications of microalgae – A review[J]. Journal of Algal Biomass Utilization, 2012, 3(4): 89 − 100. [8] Chen B, You W, Huang J, et al. Isolation and antioxidant property of the extracellular polysaccharide from Rhodella reticulate[J]. World Journal of Microbiology and Biotechnology, 2010, 26(5): 833 − 840. doi: 10.1007/s11274-009-0240-y [9] Matos J, Cardoso C, Bandarra N M, et al. Microalgae as healthy ingredients for functional food: a review[J]. Food & function, 2017, 8(8): 2672 − 2685. [10] Eppink M H M, Olivieri G, Reith H, et al. From current algae products to future biorefinery practices: a review[J]. Biorefineries, 2017: 99 − 123. [11] 胡光荣, 范 勇, 李福利. 微藻中的高附加值天然产物与挖掘策略[J]. 氨基酸和生物资源, 2015, 37(4): 1 − 6. doi: 10.14188/j.ajsh.2015.04.001 [12] Lu Y, Xu J. Phytohormones in microalgae: a new opportunity for microalgal biotechnology[J]. Trends in Plant Science, 2015, 20(5): 273 − 282. doi: 10.1016/j.tplants.2015.01.006 [13] Spolaore P, Joannis C C, Duran E, et al. Commercial applications of microalgae[J]. Journal of Bioscience and Bioengineering, 2006, 101(2): 87 − 96. doi: 10.1263/jbb.101.87 [14] Pinzon A Y, Gonzalez-delgado A D, Kafarov V. Optimization of microalgae composition for development of a typology of biorefinery based on profitability analysis[J]. Chemical Engineering Transactions, 2014, 37: 457 − 462. [15] Tibbetts S M, Milley J E, Lall S P. Chemical composition and nutritional properties of fresh water and marine microalgal biomass cultured in photobioreactors[J]. Journal of Applied Phycology, 2015, 27: 1109 − 1119. doi: 10.1007/s10811-014-0428-x [16] Arroussi H E, ElbaouchiL A, Benhima R, et al. Halophilic microalgae Dunaliella salina extracts improve seed germination and seedling growth of Triticum aestivum L. under salt stress[J]. Acta Horticulturae. 2016; (1148): 13-26. [17] Mager D M. Carbohydrates in cyanobacterial soil crusts as a source of carbon in the southwest Kalahari, Botswana[J]. Soil Biology and Biochemistry, 2010, 42(2): 313 − 318. doi: 10.1016/j.soilbio.2009.11.009 [18] Heimann K, Huerlimann R. Microalgal classification: major classes and genera of commercial microalgal species [M]//Handbook of marine microalgae. Academic Press, 2015: 25-41. [19] Philippis R D, Sili C, Paperi R, et al. Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review[J]. Journal of Applied Phycology, 2001, 13(4): 293 − 299. doi: 10.1023/A:1017590425924 [20] 李洁琼, 刘红全, 袁 莎. 微藻多糖的研究[J]. 现代化工, 2016, 36(6): 60 − 62. doi: 10.16606/j.cnki.issn0253-4320.2016.06.014 [21] Rossi F, Philippis R D. Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis [M]. Switzerland: Springer International publishing Switzerland, 2016: 565-590. [22] Ullah M W, Ul-Islam M, Khan T, et al. Recent developments in the synthesis, properties, and applications of various microbial polysaccharides[J]. Handbook of Hydrocolloids, 2021: 975 − 1015. [23] 朱桂兰, 童群义. 微生物多糖的研究进展[J]. 食品工业科技, 2012, 33(6): 444 − 448. doi: 10.13386/j.issn1002-0306.2012.06.107 [24] 黄泽波, 刘永定. 蓝细菌多糖及其应用研究概况[J]. 生物技术通报, 1997, (04): 26 − 32. doi: 10.13560/j.cnki.biotech.bull.1985.1997.04.003 [25] Sutherland I W. Bacterial exopolysaccharides[J]. Comprehensive Glycoscience, 2007, 2(2): 521 − 558. [26] Vicente-GarcíaV, Ríos-LealE, Calderón-DomínguezG, et al. Detection, isolation, and characterization of exopolysaccharide produced by a strain of Phormidium94a isolated from an arid zone of Mexico[J]. Biotechnology & Bioengineering, 2004, 85(3): 306 − 310. [27] 任欣欣, 姜 昊, 冷 欣, 等. 蓝藻胞外多糖的生态学意义及其工业应用[J]. 生态学杂志, 2013, 32(3): 762 − 771. doi: 10.13292/j.1000-4890.2013.0099 [28] 谢作明, 陈兰洲, 李敦海, 等. 土壤丝状蓝藻在荒漠治理中的作用研究[J]. 水生生物学报, 2007, 31(6): 886 − 890. doi: 10.3321/j.issn:1000-3207.2007.06.018 [29] Bhunia B, UdayU S P, Oinam G, et al. Characterization, genetic regulation and production of cyanobacterial exopolysaccharides and its applicability for heavy metal removal[J]. Carbohydrate Polymers, 2018, 179: 228 − 243. doi: 10.1016/j.carbpol.2017.09.091 [30] Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels[J]. Applied microbiology and biotechnology, 2012, 96(3): 631 − 645. doi: 10.1007/s00253-012-4398-0 [31] Keidan M, Friedlander M. Effect of Brefeldin A on cell-wall polysaccharide production in the red microalga Porphyridiumsp. (Rhodophyta) through its effect on the Golgi apparatus[J]. Journal of applied phycology, 2009, 21(6): 707 − 717. doi: 10.1007/s10811-009-9406-0 [32] Pereira S, Zille A, Micheletti E, et al. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly[J]. FEMS microbiology reviews, 2009, 33(5): 917 − 941. doi: 10.1111/j.1574-6976.2009.00183.x [33] Yi Z, Su Y, Brynjolfsson S, et al. Bioactive polysaccharides and their derivatives from microalgae: biosynthesis, applications, and challenges[J]. Studies in Natural Products Chemistry, 2021, 71: 67 − 85. [34] Xiao R, Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications[J]. Biotechnology Advances, 2016, 34(7): 1225 − 1244. doi: 10.1016/j.biotechadv.2016.08.004 [35] Maksimova I V, Bratkovskaia L B, Plekhanov S E. Extracellular carbohydrates and polysaccharides of the alga Chlorella pyrenoidosa chick S-39[J]. Izvestiia Akademii Nauk Seriia Biologicheskaia, 2004, 31(2): 217 − 224. [36] Choi S P, Nguyen M T, Sang J S. Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production[J]. Bioresource Technology, 2010, 101(14): 5330 − 5336. doi: 10.1016/j.biortech.2010.02.026 [37] Mishra A, Jha B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress[J]. Bioresource Technology, 2009, 100(13): 3382 − 3386. doi: 10.1016/j.biortech.2009.02.006 [38] Brown M R. The amino-acid and sugar composition of 16 species of microalgae used in mariculture[J]. Journal of Experimental Marine Biology and Ecology, 1991, 145: 79 − 99. doi: 10.1016/0022-0981(91)90007-J [39] Arad S, Levy-Ontman O. Red microalgal cell-wall polysaccharides: biotechnological aspects[J]. Current Opinion in Biotechnology, 2010, 21(3): 358 − 364. doi: 10.1016/j.copbio.2010.02.008 [40] Harun R, Danquah M K. Influence of acid pre-treatment on microalgal biomass for bioethanol production[J]. Process Biochemistry, 2011, 46(1): 304 − 309. doi: 10.1016/j.procbio.2010.08.027 [41] Nie Z Y, Xia J L, Levert J M. Fractionation and characterization of polysaccharides from cyanobacterium Spirulina (Arthrospira) maxima in nitrogen-limited batch culture[J]. Journal of Central South University, 2002, 9(2): 81 − 86. doi: 10.1007/s11771-002-0047-6 [42] Parikh A, Madamwar D. Partial characterization of extracellular polysaccharides from cyanobacteria[J]. Bioresource Technology, 2006, 97(15): 1822 − 1827. doi: 10.1016/j.biortech.2005.09.008 [43] Rossi F, Micheletti E, Bruno L, et al. Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments[J]. Biofouling, 2012, 28(2): 215 − 224. doi: 10.1080/08927014.2012.663751 [44] Pippo F D, Ellwood N, Gismondi A, et al. Characterization of exopolysaccharides produced by seven biofilm-forming cyanobacterial strains for biotechnological applications[J]. Journal of Applied Phycology, 2013, 25(6): 1697 − 1708. doi: 10.1007/s10811-013-0028-1 [45] Banerjee A, Sharma R, Chisti Y, et al. Botryococcusbraunii: A renewable source of hydrocarbons and other chemicals[J]. Critical Reviews in Biotechnology, 2002, 22(3): 245 − 279. doi: 10.1080/07388550290789513 [46] Hu C, Liu Y, Paulsen B, et al. Extracellular carbohydrate polymers from five desert soil algae with different cohesion in the stabilization of fine sand grain[J]. Carbohydrate Polymers, 2003, 54(1): 33 − 42. doi: 10.1016/S0144-8617(03)00135-8 [47] Nicolaus B, Panico A, Lama L, et al. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria[J]. Phytochemistry, 1999, 52: 639 − 647. doi: 10.1016/S0031-9422(99)00202-2 [48] Huang W J, Lai C H, Cheng Y L. Evaluation of extracellular products and mutagenicity in cyanobacteria cultures separated from a eutrophic reservoir[J]. Science of the Total Environment, 2007, 377(2-3): 214 − 223. doi: 10.1016/j.scitotenv.2007.01.075 [49] Farid R, Mutale-Joan C, Redouane B, et al. Effect of microalgae polysaccharides on biochemical and metabolomics pathwaysrelated to plant defense in Solanum lycopersicum[J]. Applied Biochemistry and Biotechnology, 2019, 188: 225 − 240. doi: 10.1007/s12010-018-2916-y [50] Arroussi H E, Benhima R, Elbaouchi A, et al. Dunaliella salina exopolysaccharides: a promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum)[J]. Journal of Applied Phycology, 2018, 30(5): 2929 − 2941. doi: 10.1007/s10811-017-1382-1 [51] Mutale-Joan C, Merghoub N, Arroussi H E. Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants?[J]. World Journal of Microbiology and Biotechnology, 2019, 35: 177. doi: 10.1007/s11274-019-2745-3 [52] Potts M. Mechanisms of desiccation tolerance in cyanobacteria[J]. European Journal of Phycology, 1999, 34: 319 − 328. doi: 10.1080/09670269910001736382 [53] 梁文裕, 马秀丽, 郑国旗, 等. 发状念珠藻多糖的提取及其对农作物种子发芽率的影响[J]. 安徽农业科学, 2008, 36(23): 141 − 142. doi: 10.3969/j.issn.0517-6611.2008.23.018 [54] Xu Y, Rossi F, Colica G, et al. Use of cyanobacterial polysaccharides to promote shrub performances in desert soils: a potential approach for the restoration of desertified areas[J]. Biology and Fertility of Soils, 2013, 49(2): 143 − 152. doi: 10.1007/s00374-012-0707-0 [55] 龚 健, 张丙昌, 索菲娅. 生物结皮中优势蓝藻胞外多糖对几种荒漠草本植物种子萌发的影[J]. 中国沙漠, 2015, 35(3): 639 − 644. doi: 10.7522/j.issn.1000-694X.2014.00037 [56] Hanson J, Smeekens S. Sugar perception and signaling—an update[J]. Current opinion in plant biology, 2009, 12(5): 562 − 567. doi: 10.1016/j.pbi.2009.07.014 [57] El-Naggar N E A, Hussein M H, Dalal S R, et al. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth[J]. Scientific Reports, 2020, 10(1): 3011. doi: 10.1038/s41598-020-59945-w [58] Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants[J]. The plant cell, 2002, 14(suppl_1): 185 − 205. [59] Rachidi F, Benhima R, Sbabou L, et al. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution[J]. Biotechnology reports (Amsterdam, Netherlands), 2020, 25: e00426. [60] Vera J, Castro J, Gonzalez A, et al. Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants[J]. Mar Drugs, 2011, 9(12): 2514 − 2525. doi: 10.3390/md9122514 [61] González A, Castro J, Vera J, et al. Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division[J]. Journal of Plant Growth Regulation, 2013, 32(2): 443 − 448. doi: 10.1007/s00344-012-9309-1 [62] Michalak I, Dmytryk A, Schroeder G, et al. The application of homogenate and filtrate from Baltic seaweeds in seedling growth tests[J]. Applied Sciences, 2017, 7(3): 230. doi: 10.3390/app7030230 [63] Michalak I, Chojnacka K. Algae as production systems of bioactive compounds[J]. Engineering in Life Sciences, 2015, 15(2): 160 − 176. doi: 10.1002/elsc.201400191 [64] Shukla P S, Tudor B, Critchley A T, et al. Carrageenans from red seaweeds as promoters of growth and elicitors of defense response in plants[J]. Frontiers in Marine Science, 2016, 3(804): 1 − 9. [65] Mishra A, Kavita K, Jha B. Characterization of extracellularpolymeric substances produced by micro-algae Dunaliella salina[J]. Carbohydrate Polymers, 2011, 83(2): 852 − 857. doi: 10.1016/j.carbpol.2010.08.067 [66] Zha S H, Zhao Q S, Zhao B, et al. Molecular weight controllable degradation of Laminaria japonica polysaccharides and its antioxidant properties[J]. Journal of Ocean University of China, 2016, 15: 637 − 642. doi: 10.1007/s11802-016-2943-7 [67] Kissoudis C, Clemens V, Visser R, et al. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk[J]. Frontiers in Plant Science, 2014, 5: 207. [68] Gupta P, Ravi I, Sharma V. Induction of β-1, 3-glucanaseand chitinase activity in the defense response of Eruca sativa plants against the fungal pathogen Alternaria brassicicola[J]. Journal of Plant Interactions, 2013, 8(2): 155 − 161. doi: 10.1080/17429145.2012.679705 [69] Fesel P H, Zuccaro A. β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants[J]. Fungal Genetics and Biology, 2016, 90: 53 − 60. doi: 10.1016/j.fgb.2015.12.004 [70] Ghannam A, Abbas A, Alek H, et al. Enhancement of local plantimmunity against tobacco mosaic virus infection after treatmentwith sulphated-carrageenan from red alga (Hypneamusciformis)[J]. Physiological and Molecular Plant Pathology, 2013, 84: 19 − 27. doi: 10.1016/j.pmpp.2013.07.001 [71] Vera J, Castro J, Contreras R, et al. Oligo-carrageenans induce a long-term and broad-range protection against pathogens in tobacco plants (var. Xanthi)[J]. Physiological and Molecular Plant Pathology, 2012, 79: 31 − 39. doi: 10.1016/j.pmpp.2012.03.005 [72] Rachidi F, Benhima R, Kasmi Y, et al. Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches[J]. Scientific Reports, 2021, 11: 930. doi: 10.1038/s41598-020-78820-2 [73] Per T S, Khan N A, Reddy P S, et al. Approaches in modulating proline metabolism inplants for salt and drought stress tolerance: phytohormones, mineralnutrients and transgenics[J]. Russian Journal of Plant Physiology, 2017, 115: 126 − 140. [74] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9): 405 − 410. doi: 10.1016/S1360-1385(02)02312-9 [75] You J, Chan Z. ROS Regulation during abiotic stress responses in crop plants[J]. Frontiers in Plant Science, 2015, 6(4): 690 − 695. [76] Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55(1): 373 − 399. doi: 10.1146/annurev.arplant.55.031903.141701 [77] Birgit K. A genome-wide survey for arabidopsis leucine-rich repeat receptor kinases implicated in plant immunity[J]. Frontiers in Plant Science, 2011, 2: 88. [78] Barclay W R. Microalgal polysaccharide production for the conditioning of agricultural soils[J]. Plant and Soil, 1985, 88(2): 159 − 169. doi: 10.1007/BF02182443 [79] Foster R C. Polysaccharides in soil fabrics[J]. Science, 1981, 214(4521): 665 − 667. doi: 10.1126/science.214.4521.665 [80] 陈恩凤, 关连珠, 汪景宽, 等. 土壤特征微团聚体的组成比例与肥力评价[J]. 土壤学报, 2001, (1): 49 − 53. doi: 10.3321/j.issn:0564-3929.2001.01.007 [81] Issa O M, Défarge C, Bissonnais Y L, et al. Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil[J]. Plant and Soil, 2007, 290(1-2): 209 − 219. doi: 10.1007/s11104-006-9153-9 [82] Belnap J, Phillips S L, Witwicki D L, et al. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts[J]. Journal of Arid Environments, 2008, 72(7): 1257 − 1264. doi: 10.1016/j.jaridenv.2008.02.019 [83] Bowker M A, Belnap J, Chaudhary V B, et al. Revisiting classic water erosion models in drylands: The strong impact of biological soil crusts[J]. Soil Biology and Biochemistry, 2008, 40(9): 2309 − 2316. doi: 10.1016/j.soilbio.2008.05.008 [84] Hu C, Liu Y, Song L, et al. Effect of desert soil algae on the stabilization of fine sands[J]. Journal of Applied Phycology, 2002, 14(4): 281 − 292. doi: 10.1023/A:1021128530086 [85] Maqubela M P, Mnkeni P, Issa O M, et al. Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth[J]. Plant and Soil, 2009, 315(1-2): 79 − 92. doi: 10.1007/s11104-008-9734-x [86] Maqubela M P, Muchaonyerwa P, Mnkeni P N S. Inoculation effects of two South African cyanobacteria strains on aggregate stability of a silt loam soil[J]. African Journal of Biotechnology, 2012, 11(47): 10726 − 10735. [87] Kidron G J, Yaalon D H, Vonshak A. Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging[J]. Soil Science, 1999, 164(1): 18 − 27. doi: 10.1097/00010694-199901000-00004 [88] Tamaru Y, Takani Y, Yoshida T, et al. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune[J]. Applied and Environmental Microbiology, 2005, 71(11): 7327 − 7333. doi: 10.1128/AEM.71.11.7327-7333.2005 [89] Potts M. Desiccation tolerance: a simple process?[J]. Trends in Microbiology, 2001, 9(11): 553 − 559. doi: 10.1016/S0966-842X(01)02231-4 [90] Gideon M, Kidron G J, Ahuva V, et al. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts[J]. Fems Microbiology Ecology, 1996, (2): 121 − 130. [91] 陈兰周, 刘永定, 宋立荣. 微鞘藻胞外多糖在沙漠土壤成土中的作用[J]. 水生生物学报, 2002, 26(2): 155 − 159. doi: 10.3321/j.issn:1000-3207.2002.02.008 [92] Mager D M, Thomas A D. Extracellular polysaccharides from cyanobacterial soil crusts and their role in dryland surface processes [D]. Manchester: Manchester Metropolitan University, 2008. [93] Kazuhiko S, Manabu H, Junko N, et al. Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune[J]. Plant and Cell Physiology, 2002, (2): 170 − 176. [94] Wang Q Q, Liu L L, Li Y, et al. Long-term fertilization leads to specific PLFA finger-prints in Chinese Hapludults soil[J]. Journal of Integrative Agriculture, 2020, 19(5): 1354 − 1362. doi: 10.1016/S2095-3119(19)62866-2 [95] Weiss T L, Roth R, Goodson C, et al. Colony organization in the green alga Botryococcusbraunii (Race B) is specified by a complex extracellular matrix[J]. Eukaryotic Cell, 2012, 11(12): 1424 − 1440. doi: 10.1128/EC.00184-12 [96] Bharti A, Velmourougane K, Prasanna R. Phototrophic biofilms: diversity, ecology and applications[J]. Journal of Applied Phycology, 2017, 29(9): 1 − 16. [97] Nisha R, KiranB, KaushikA, et al. Bioremediation of salt affected soils using cyanobacteria in terms of physical structure, nutrient status and microbial activity[J]. International Journal of Environmental Science and Technology, 2018, 15(3): 571 − 580. doi: 10.1007/s13762-017-1419-7 [98] Liu L, Li W, Song W, et al. Remediation techniques for heavy metal-contaminated soils: principles and applicability[J]. Science of the Total Environment, 2018, 633(15): 206 − 219. [99] Arias S, Moral A D, Ferrer M R, et al. Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonasmaura, with a novel composition and interesting properties for biotechnology[J]. Extremophiles, 2003, 7(4): 319 − 326. doi: 10.1007/s00792-003-0325-8 [100] Nichols C, Guezennec J, Bowman J P. Bacterial exopolysaccharides from extreme marine environments with special consideration of the southern ocean, sea ice, and deep-sea hydrothermal vents: A review[J]. Marine Biotechnology, 2005, 7(4): 253 − 271. doi: 10.1007/s10126-004-5118-2 [101] Philippis R D, Paperi R, Sili C. Heavy metal sorption by released polysaccharides and whole cultures of two exopolysaccharide-producing cyanobacteria[J]. Biodegradation, 2007, 18(2): 181 − 187. doi: 10.1007/s10532-006-9053-y [102] Philippis R D, Colia G, Micheletti E. Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process[J]. Applied Microbiology and Biotechnology, 2011, 92(4): 697 − 708. doi: 10.1007/s00253-011-3601-z [103] Ozturk S, Aslim B, Suludere Z, et al. Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition[J]. Carbohydrate Polymers, 2014, 101: 265 − 271. doi: 10.1016/j.carbpol.2013.09.040 [104] Kaplan D, Christiaen D, Arad S. Chelating properties of extracellular polysaccharides from Chlorella spp.[J]. Applied and Environmental Microbiology, 1987, 53(12): 2953 − 2956. doi: 10.1128/aem.53.12.2953-2956.1987 -