Effects of Silicon Application on Growth and Antioxidant System of Rice in the Pre- fertility Period under Cadmium Stress
-
摘要:
目的 探究在北方水稻土中施硅对镉胁迫下水稻生长、光合特性以及抗氧化系统的影响,为进一步应用硅缓解水稻镉毒害提供理论依据。 方法 通过盆栽试验方法,研究在不同浓度镉添加水平(0、1、3、5 mg kg−1)下,施加不同浓度的硅(0、100、300、500 mg kg−1)对生育前期(至分蘖期)水稻生长、叶片光合特性和抗氧化系统的影响。 结果 不同浓度镉胁迫均显著降低了水稻株高、根长和生物量(地上部和根部鲜重),增加了水稻茎叶中镉含量,降低了水稻叶片叶绿素含量、净光合速率、胞间CO2和蒸腾速率。施镉量为3和5 mg kg−1时,水稻叶片气孔导度显著下降。镉胁迫下,施硅增加了水稻叶片叶绿素含量,降低了水稻茎叶中镉含量,改善了水稻叶片光合特性;水稻的株高、根长和生物量也随着硅的施入而得到提高。对于抗氧化系统来说,与空白对照(Si0Cd0)相比,施镉量为3和5 mg kg−1时,水稻叶片超氧化物歧化酶和过氧化氢酶活性显著降低、降幅达16.9%、26.3%和9.3%、15.7%,而过氧化物酶活性显著提高、提高幅度为51.1%和66.6%;镉胁迫使水稻叶片丙二醛和脯氨酸含量显著增加。与不施硅相比,在不同浓度镉胁迫下,施加100、300 mg kg−1的硅使水稻叶片超氧化物歧化酶和过氧化氢酶活性显著提高、升高幅度达20.4% ~ 58.9%、25.3% ~ 72.5%和5.8% ~ 11.9%、22.7% ~ 25.4%,过氧化物酶活性显著降低、降幅达21.2% ~ 43.0%和31.8% ~ 50.8%;同时,施加300和500 mg kg−1硅使水稻叶片丙二醛和脯氨酸含量均显著降低。 结论 不同硅添加量对镉胁迫下生育前期水稻生长、叶片叶绿素含量及其光合特性、抗氧化系统的改善作用明显,且以添加300 mg kg−1硅处理的效果最好。 Abstract:Objective The aims were to explore the effects of Silicon (Si) application on growth, photosynthesis and antioxidant system of rice under Cadmium (Cd) stress in northern paddy soil, so as to provide a theoretical basis for further application of Si to alleviate Cd toxicity in rice. Method Under different Cd addition levels (0, 1, 3 and 5 mg kg−1), the effects of different Si concentrations (0, 100, 300 and 500 mg kg−1) on rice growth, leaf photosynthesis and antioxidant system in the pre- fertility period (to tillering stage) were studied by using the pot experiment. Result The rice plant height, root length and biomass (aboveground and root fresh weight), chlorophyll content, net photosynthetic rate (Pn), intercellular CO2 (Ci) and transpiration rate (Tr) in rice leaves were decreased significantly under different Cd concentrations, and the Cd content in rice shoot was increased. When the amounts of Cd applied were 3 and 5 mg kg−1, stomatal conductance (Gs) decreased significantly in rice leaves. Under Cd stress, Si application increased chlorophyll content and photosynthetic characteristics of rice leaves, decreased Cd content in rice shoot. The plant height, root length and biomass of rice were also increased with the application of Si. For the antioxidant system, compared with the blank control (Si0Cd0), when 3 and 5 mg kg−1 Cd was applied, SOD and CAT activities were significantly decreased by 16.9%, 26.3% and 9.3%, 15.7%, while POD activities were significantly increased by 51.1% and 66.6%. MDA and Pro contents significantly increased in rice leaves under Cd stress. Compared with no Si application, under different concentrations of Cd stress, the SOD and CAT activities of rice leaves were significantly increased by 20.4%-58.9%, 25.3%-72.5% and 5.8%-11.9%, 22.7%-25.4% in 100 and 300 mg kg−1 Si treatment respectively. POD activities decreased significantly by 21.2%-43.0% and 31.8%-50.8%. At the same time, 300 and 500 mg kg−1 Si significantly reduced MDA and Pro contents in rice leaves. Conclusion different supplemental levels of Si had appreciably improved on growth, leaf chlorophyll content, photosynthetic characteristics and antioxidant system of rice in the pre- fertility period under Cd stress, and the effect of 300 mg kg−1 Si treatment was the best. -
Key words:
- Silicon /
- Cadmium /
- Rice growth /
- Photosynthetic characteristics /
- Antioxidant system
-
表 1 盆栽试验处理及编号
Table 1. Designs and treatments of potted experiment
硅添加水平
Supplemental
level of Si
( mg kg–1)镉添加水平( mg kg–1)
Supplemental level of Cd0 (Cd0) 1 (Cd1) 3 (Cd2) 5 (Cd3) 0 (Si0) Si0Cd0 Si0Cd1 Si0Cd2 Si0Cd3 100 (Si1) Si1Cd0 Si1Cd1 Si1Cd2 Si1Cd3 300 (Si2) Si2Cd0 Si2Cd1 Si2Cd2 Si2Cd3 500 (Si3) Si3Cd0 Si3Cd1 Si3Cd2 Si3Cd3 表 2 土壤中添加硅、镉数量对盆栽水稻长势指标的影响
Table 2. Effects of soil addition of Si and Cd on growth indices of potted rice
处理
Treatment株高
Plant height
(cm)根长
Root length
(cm)生物量(g 株–1)
Biomass根部鲜重(g 株–1)
Fresh weight of root地上部鲜重(g 株–1)
Fresh weight of abovegroundSi0 Cd0 66.27 ± 0.92 d 17.80 ± 0.60 f 2.57 ± 0.02 d 8.34 ± 0.3 d Si0 Cd1 64.67 ± 0.99 ef 16.00 ± 0.40 g 2.14 ± 0.01 e 6.24 ± 0.35 g Si0 Cd2 59.00 ± 1.25 i 14.50 ± 0.50 i 1.49 ± 0.02 h 4.77 ± 0.16 i Si0 Cd3 48.87 ± 0.6 k 12.25 ± 0.25 j 0.72 ± 0.02 j 2.74 ± 0.10 k Si1 Cd0 68.33 ± 0.58 c 18.53 ± 0.50 e 2.79 ± 0.04 c 8.89 ± 0.10 c Si1 Cd1 65.77 ± 0.75 de 17.77 ± 0.21 f 2.28 ± 0.09 e 7.54 ± 0.13 f Si1 Cd2 61.00 ± 1.00 h 15.47 ± 0.12 gh 1.68 ± 0.01 g 5.14 ± 0.16 h Si1 Cd3 54.73 ± 0.50 j 14.90 ± 0.10 hi 0.82 ± 0.09 j 3.44 ± 0.14 j Si2 Cd0 73.07 ± 0.50 a 24.40 ± 0.62 a 3.68 ± 0.09 a 10.03 ± 0.13 a Si2 Cd1 68.93 ± 0.81 c 23.37 ± 0.47 b 2.65 ± 0.09 d 8.27 ± 0.05 d Si2 Cd2 63.73 ± 0.50 fg 20.53 ± 0.61 cd 2.22 ± 0.08 e 6.42 ± 0.15 g Si2 Cd3 62.73 ± 0.70 j 17.53 ± 0.46 f 1.96 ± 0.14 f 5.14 ± 0.06 h Si3 Cd0 71.07 ± 0.90 b 21.00 ± 0.35 c 3.04 ± 0.07 b 9.53 ± 0.09 b Si3 Cd1 66.60 ± 0.53 d 20.10 ± 0.10 d 2.55 ± 0.12 d 7.83 ± 0.13 e Si3 Cd2 62.87 ± 0.81 j 18.63 ± 0.06 e 1.19 ± 0.15 i 5.25 ± 0.13 h Si3 Cd3 61.20 ± 1.20 h 15.23 ± 0.49 h 1.50 ± 0.07 h 4.82 ± 0.10 i 注:不同小写字母表示在 P < 0.05 水平上差异显著,下同。 表 3 土壤中添加硅、镉数量对盆栽水稻叶片光合特性的影响
Table 3. Effects of soil addition of Si and Cd on photosynthetic characteristics of potted rice leaves
处理
Treatment净光合速率(µmol m–2 s–1)
Net photosynthetic rate胞间CO2(µmol m–2 s–1)
Intercellular CO2蒸腾速率(mmol m–2 s–1)
Transpiration rate气孔导度(mmol m–2 s–1)
Stomatal conductanceSi0 Cd0 7.55 ± 0.42 c 272.50 ± 0.58 d 7.01 ± 0.04 bc 0.15 ± 0.02 d Si0 Cd1 6.33 ± 0.28 de 261.67 ± 2.52 f 6.44 ± 0.21 e 0.12 ± 0.01 defg Si0 Cd2 5.34 ± 0.12 fgh 244.33 ± 2.08 gh 5.07 ± 0.08 g 0.09 ± 0.01 gh Si0 Cd3 3.83 ± 0.64 i 214.00 ± 1.00 i 4.34 ± 0.23 h 0.08 ± 0.01 h Si1 Cd0 7.69 ± 0.2 c 306.00 ± 1.15 c 7.13 ± 0.51 b 0.19 ± 0.03 c Si1 Cd1 6.49 ± 0.07 d 263.33 ± 5.51 ef 6.56 ± 0.25 de 0.13 ± 0.01 def Si1 Cd2 5.66 ± 0.1 fg 246.50 ± 2.52 g 5.66 ± 0.06 f 0.11 ± 0.01 efgh Si1 Cd3 4.11 ± 0.16 i 241.00 ± 2.00 h 4.83 ± 0.11 g 0.09 ± 0.02 gh Si2 Cd0 9.24 ± 0.13 a 338.33 ± 0.58 a 8.68 ± 0.03 a 0.25 ± 0.02 a Si2 Cd1 6.76 ± 0.23 d 270.00 ± 3.00 d 7.11 ± 0.14 bc 0.20 ± 0.01 bc Si2 Cd2 5.91 ± 0.18 ef 263.33 ± 1.53 ef 6.51 ± 0.41 e 0.18 ± 0.02 c Si2 Cd3 5.14 ± 0.67 gh 246.00 ± 3.00 g 5.77 ± 0.20 f 0.11 ± 0.01 efgh Si3 Cd0 8.56 ± 0.38 b 317.00 ± 1.00 b 7.35 ± 0.05 b 0.23 ± 0.03 ab Si3 Cd1 6.65 ± 0.13 d 266.00 ± 2.00 e 6.88 ± 0.28 cd 0.18 ± 0.03 c Si3 Cd2 5.82 ± 0.44 ef 261.50 ± 1.53 f 5.82 ± 0.12 f 0.14 ± 0.03 de Si3 Cd3 4.91 ± 0.01 h 244.00 ± 2.65 gh 5.52 ± 0.10 f 0.10 ± 0.02 fgh -
[1] 王 波, 张然然, 杨如意, 等. 外源硒和耐硒细菌对镉胁迫下水稻生长、生理和硒镉积累的影响[J]. 农业环境科学学报, 2020, 39(12): 2710 − 2718. doi: 10.11654/jaes.2020-0437 [2] Rizwan M, Ali S, Adrees M, et al. A critical review on effects, tolerance mechanisms and management of cadmium in vegetables[J]. Chemosphere, 2017, 182: 90 − 105. doi: 10.1016/j.chemosphere.2017.05.013 [3] 闫 湘, 王 旭, 李秀英, 等. 我国水溶肥料中重金属含量、来源及安全现状[J]. 植物营养与肥料学报, 2016, 22(1): 8 − 18. doi: 10.11674/zwyf.14443 [4] 中华人民共和国环境保护部, 中华人民共和国国土资源部. 全国土壤污染状况调查公报[EB/OL]. (2014-04-17). http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm. [5] Wang J, Jiang Y, Sun J, et al. Geochemical transfer of cadmium in river sediments near a lead-zinc smelter[J]. Ecotoxicology and Environmental Safety, 2020, 196: 110529. doi: 10.1016/j.ecoenv.2020.110529 [6] 于方明, 刘可慧, 刘 华, 等. 镉污染对水稻不同生育期抗氧化系统的影响[J]. 生态环境学报, 2012, 21(1): 88 − 93. doi: 10.3969/j.issn.1674-5906.2012.01.017 [7] Huang H, Li M, Rizwan M, et al. Synergistic Effect of Silicon and Selenium on the Alleviation of Cadmium Toxicity in Rice Plants[J]. Journal of Hazardous Materials, 2020, 401: 123393. [8] 龙思斯, 宋正国, 雷 鸣, 等. 不同外源镉对水稻生长和富集镉的影响研究[J]. 农业环境科学学报, 2016, 35(3): 419 − 424. doi: 10.11654/jaes.2016.03.002 [9] 易亚科, 周志波, 陈光辉. 土壤酸碱度对水稻生长及稻米镉含量的影响[J]. 农业环境科学学报, 2017, 36(3): 428 − 436. doi: 10.11654/jaes.2016-1274 [10] 贺敏杰, 蔡昆争, 王 维, 等. 硅素分期施用对土壤镉形态和水稻镉累积的影响[J]. 农业环境科学学报, 2018, 37(8): 1651 − 1659. doi: 10.11654/jaes.2018-0131 [11] 缑天韵, 苏 艳, 陈馨航, 等. 硅促进盐胁迫下黄瓜NHX1基因表达及Na + 在液泡中的区隔化效应[J]. 植物营养与肥料学报, 2020, 26(11): 1923 − 1934. doi: 10.11674/zwyf.20160 [12] Vaculik M, Pavlovic A, Lux A. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize[J]. Ecotoxicology and Environmental Safety, 2015, 120: 66 − 73. doi: 10.1016/j.ecoenv.2015.05.026 [13] 彭 华, 田发祥, 魏 维, 等. 不同生育期施用硅肥对水稻吸收积累镉硅的影响[J]. 农业环境科学学报, 2017, 36(6): 1027 − 1033. doi: 10.11654/jaes.2017-0288 [14] Farooq M A, Ali S, Hameed A, et al. Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton[J]. Ecotoxicology and Environmental Safety, 2013, 96(4): 242 − 249. [15] 王怡璇, 刘 杰, 唐云舒, 等. 硅对水稻镉转运的抑制效应研究[J]. 生态环境学报, 2016, 25(11): 1822 − 1827. doi: 10.16258/j.cnki.1674-5906.2016.11.013 [16] 彭 鸥, 刘玉玲, 铁柏清, 等. 施硅对镉胁迫下水稻镉吸收和转运的调控效应[J]. 生态学杂志, 2019, 38(4): 1049 − 1056. doi: 10.13292/j.1000-4890.201904.005 [17] 臧惠林. 土壤有效硅含量变化的初步研究[J]. 土壤, 1987, 19(3): 123 − 126. doi: 10.13758/j.cnki.tr.1987.03.002 [18] 马同生, 冯亚军, 梁永超, 等. 江苏沿江地区水稻土硅素供应力与硅肥施用[J]. 土壤, 1994, 26(3): 154 − 156. doi: 10.13758/j.cnki.tr.1994.03.016 [19] 刘鸣达, 张玉龙. 水稻土硅素肥力的研究现状与展望[J]. 土壤通报, 2001, 32(4): 187 − 192. doi: 10.3321/j.issn:0564-3945.2001.04.013 [20] 劳家柽. 土壤农化分析手册[M]. 北京: 农业出版社, 1988. [21] 张志良. 植物生理学实验指导[M]. 北京: 高等教育出版社, 1990. [22] Huang B, Xin J, Dai H, et al. Root morphological responses of three hot pepper cultivars to Cd exposure and their correlations with Cd accumulation[J]. Environmental Science& Pollution Research, 2015, 22: 1151 − 1159. [23] Xin J, Huang B, Dai H, et al. Characterization of cadmium uptake, translocation, and distribution in young seedlings of two hot pepper cultivars that differ in fruit cadmium concentration[J]. Environmental Science & Pollution Research, 2014, 21(12): 7449 − 7456. [24] 刘彩凤, 史刚荣, 余如刚, 等. 硅缓解植物镉毒害的生理生态机制[J]. 生态学报, 2017, 37(23): 7799 − 7810. [25] 李天哲, 陈爱婷, 李 彩, 等. 镉胁迫下硅对水稻幼苗生长与生理响应的影响[J]. 农业环境科学学报, 2018, 37(6): 1072 − 1078. doi: 10.11654/jaes.2017-1526 [26] Vaculík M, Landberg T, Greger M, et al. Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants[J]. Ann Bot, 2012, 110(2): 433 − 443. doi: 10.1093/aob/mcs039 [27] 刘鸣达. 水稻土供硅能力评价方法及水稻硅素肥料效应的研究[D]. 沈阳农业大学, 2002. [28] 耿 杰, 宋明阳, 李 军, 等. 硅对分蘖期不同品种水稻镉吸收积累的影响[J]. 土壤通报, 2018, 49(3): 697 − 704. doi: 10.19336/j.cnki.trtb.2018.03.29 [29] 黄秋婵, 韦友欢, 农克良, 等. 硅对镉胁迫下水稻幼苗营养器官外部形态与镉累积量的影响[J]. 江苏农业科学, 2008, (5): 20 − 23. doi: 10.3969/j.issn.1002-1302.2008.05.007 [30] 史新慧, 王 贺, 张福锁. 硅提高水稻抗镉毒害机制的研究[J]. 农业环境科学学报, 2006, 25(5): 1112 − 1116. doi: 10.3321/j.issn:1672-2043.2006.05.004 [31] 雷武生, 杨宝林, 戴金平. 硫肥对镉胁迫下不同基因型水稻抗氧化系统和光合特性的影响[J]. 河北农业大学学报, 2014, 37(2): 12 − 17. doi: 10.13320/j.cnki.jauh.2014.0030 [32] Feng J, Shi Q, Wang X, et al. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L[J]. Scientia Horticulturae, 2010, 123(4): 521 − 530. doi: 10.1016/j.scienta.2009.10.013 [33] Pál M, Horváth E, Janda T, et al. Physiological changes and defense mechanisms induced by cadmium stress in maize[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(2): 239 − 246. doi: 10.1002/jpln.200520573 [34] Krantev A, Yordanova R, Janda T, et al. Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants[J]. Journal of Plant Physiology, 2008, 165(9): 920 − 931. doi: 10.1016/j.jplph.2006.11.014 [35] 徐红霞, 翁晓燕, 毛伟华, 等. 镉胁迫对水稻光合、叶绿素荧光特性和能量分配的影响[J]. 中国水稻科学, 2005, 19(4): 338 − 342. doi: 10.3321/j.issn:1001-7216.2005.04.010 [36] 黄秋婵, 韦友欢, 黎晓峰. 硅对镉胁迫下水稻幼苗生长及其生理特性的影响[J]. 湖北农业科学, 2007, 46(3): 354 − 357. doi: 10.3969/j.issn.0439-8114.2007.03.011 [37] 史 静, 潘根兴, 夏运生, 等. 镉胁迫对两品种水稻生长及抗氧化酶系统的影响[J]. 生态环境学报, 2013, 22(5): 832 − 837. doi: 10.3969/j.issn.1674-5906.2013.05.018 [38] Liu Q, Zheng L, He F, et al. Transcriptional and physiological analyses identify a regulatory role for hydrogen peroxide in the lignin biosynthesis of copper-stressed rice roots[J]. Plant and Soil, 2015, 387(1-2): 323 − 336. doi: 10.1007/s11104-014-2290-7 [39] 刘 莉. 镉对不同作物幼苗生长和生理特性的影响[D]. 杭州: 浙江大学, 2005. [40] 闫金朋. 施用不同形态硒对镉胁迫下水稻生长及吸收、转运镉的影响[D]. 南宁: 广西大学, 2019. -