Influence of Natural and Anthropogenic Factors on Soil Organic Matter Content in Farmland
-
摘要:
目的 以江西省泰和县为研究区域,揭示县域尺度耕地土壤有机质(SOM)的空间分布规律。 方法 设计覆盖整个泰和县耕地的采样网络,采集361个表层(0 ~ 20 cm)土壤样品。使用普通克里格插值法探究研究区耕地土壤有机质含量的空间分布特征,利用随机森林模型结合经典统计方法探究泰和县耕地土壤有机质空间分异的主要影响因素。 结果 研究区耕地土壤有机质含量均值为31.05 g kg−1,处于较丰富水平,表明泰和县耕地土壤肥力水平较好。泰和县耕地土壤有机质具有中等程度的空间自相关性,具有中部低、东西高的空间分布特征。秸秆还田和海拔是耕地土壤有机质含量的主要影响因子,解释率为56.37%和18.73%。土壤pH、成土母质、施肥量和灌溉能力对土壤有机质含量也具有显著影响,解释率分别为9.66%、9.47%、6.76%和5.45%。 结论 采取秸秆还田、合理施用石灰和完善排水设施等田间管理措施可以有效提高耕地土壤有机质含量,改善土壤保肥固碳能力,对促进农业可持续发展,助力实施国家“碳达峰”和“碳中和”战略具有重要价值和意义。 Abstract:Objective The Taihe County of Jiangxi Province was taken as the research area to reveal the spatial pattern of soil organic matter (SOM) content and its influencing mechanism at the county scale. Method In this study, 361 surface (0-20 cm) soil samples were collected in Taihe County. Then the ordinary kriging, random forest and classical statistical methods were used to analyze the spatial pattern of SOM contents as well as to calculate the importance of different natural and anthropogenic factors on SOM variation. Result The average SOM content in the study area was 31.05 g kg−1, which indicates a good fertile of farmland soil in Taihe County. The SOM content showed obvious spatial autocorrelation, which has the spatial distribution characteristics of low in the central region and high in the east and west. The main driving factors of SOM content in the study area were returning straw, and altitude with relative importance of 56.37% and 18.73%, respectively. The pH, parent materials, chemical fertilizer application and irrigation also clearly contributed to SOM, with relative importance of 9.66%, 9.47%, 6.76% and 5.45%, respectively. Conclusion Reasonable soil management measures such as straw returning and good drainage conditions can effectively improve the soil organic matter content of cultivated land, as well as carbon sequestration ability, and thus contribute to promote the sustainable development of agriculture and achieving carbon peaking and carbon neutrality strategies. -
表 1 土壤有机质含量描述性统计结果
Table 1. Descriptive statistics of soil organic matter
均值(g kg–1)
Mean最小值(g kg–1)
Minimum最大值(g kg–1)
Maximum标准差
Standard deviation偏度
Skewness峰度
Kurtosis变异系数(%)
Coefficient of variation有机质 31.05 12.80 58.20 9.44 0.41 −0.39 30.38 表 2 土壤有机质变异函数理论模型参数
Table 2. Soil organic matter variogram theoretical model parameters
块金值
Nugget基台值
Sill变程(m)
Range块金比(%)
Nugget/Sill理论模型
Theoretical model决定系数
R225.70 89.43 5542.56 28.73 高斯模型 0.94 -
[1] 朱洪芬, 南 锋, 徐占军, 等. 黄土高原盆地土壤有机质与影响因子的空间多尺度关系[J]. 生态学报, 2017, 37(24): 8348 − 8360. [2] Hu B F, Xie M D, Li H Y, et al. Stoichiometry of soil carbon, nitrogen, and phosphorus in farmland soils in Southern China: Spatial pattern and related dominates[J]. Catena, 2022, 217: 106468. doi: 10.1016/j.catena.2022.106468 [3] Dai W H, Huang Y. Relation of soil organic matter concentration to climate and altitude in zonal soils of China[J]. Catena, 2005, 65(1): 87 − 94. [4] Guo N G, Shi X Z, Zhao Y C, et al. Environmental and anthropogenic factors driving changes in paddy soil organic matter: A case study in the middle and lower Yangtze River Plain of China[J]. Pedosphere, 2017, 27(5): 926 − 937. doi: 10.1016/S1002-0160(17)60383-7 [5] Zheng L, Wu W L, Wei Y P, et al. Effects of straw return and regional factors on spatio-temporal variability of soil organic matter in a high-yielding area of northern China[J]. Soil and Tillage Research, 2015, 145: 78 − 86. doi: 10.1016/j.still.2014.08.003 [6] 李冬初, 黄 晶, 马常宝, 等. 中国稻田土壤有机质时空变化及其驱动因素[J]. 中国农业科学, 2020, 53(12): 2410 − 2422. [7] Fan M M, Lal R, Zhang H, Margenot A J, et al. Variability and determinants of soil organic matter under different land uses and soil types in eastern China[J]. Soil and Tillage Research, 2020, 198: 104544. doi: 10.1016/j.still.2019.104544 [8] 江叶枫, 孙 凯, 郭 熙, 等. 南方红壤区不同侵蚀程度下土壤有机质空间变异的影响因素研究[J]. 自然资源学报, 2018, 33(1): 149 − 160. [9] 姜赛平, 张认连, 张维理, 等. 近30年海南岛土壤有机质时空变异特征及成因分析[J]. 中国农业科学, 2019, 52(6): 1032 − 1044. [10] 高凤杰, 马泉来, 韩文文, 等. 黑土丘陵区小流域土壤有机质空间变异及分布格局[J]. 环境科学, 2016, 37(5): 1915 − 1922. [11] 韩杏杏, 陈 杰, 王海洋, 等. 基于随机森林模型的耕地表层土壤有机质含量空间预测−以河南省辉县市为例[J]. 土壤, 2019, 51(1): 152 − 159. [12] 邹润彦, 周宏冀, 郭 熙, 等. 环鄱阳湖区农田土壤有机碳影响因素空间分布格局分析及制图研究[J]. 长江流域资源与环境, 2019, 28(5): 1121 − 1131. [13] 江叶枫, 饶 磊, 郭 熙, 等. 江西省耕地土壤有机碳空间变异的主控因素研究[J]. 土壤, 2018, 50(04): 778 − 786. [14] 陈 琳, 任春颖, 王宗明, 等. 基于克里金插值的耕地表层土壤有机质空间预测[J]. 干旱区研究, 2017, 34(4): 798 − 805. [15] 胡碧峰, 王佳昱, 傅婷婷, 等. 空间分析在土壤重金属污染研究中的应用[J]. 土壤通报, 2017, 48(4): 1014 − 1024. [16] 史 舟, 李 艳. 地统计学在土壤学中的应用[M]. 北京: 中国农业出版社, 2006: 70 − 73. [17] 胡碧峰. 基于地统计学与GIS的区域土壤重金属污染评价与不确定性分析[D]. 浙江大学, 2017. [18] 宋英强, 杨联安, 冯武焕, 等. 基于多源辅助变量和极限学习机的蔬菜地土壤有机质预测研究[J]. 土壤通报, 2017, 48(1): 118 − 126. [19] 朱洪芬. 黄土高原太原盆地区土壤养分空间分异与尺度效应研究[D]. 生态学报, 2017. [20] Zhou T, Geng Y, Chen J, et al. High-resolution digital mapping of soil organic carbon and soil total nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms[J]. Science of the Total Environment, 2020, 729: 138244. [21] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5 − 32. doi: 10.1023/A:1010933404324 [22] 庞龙辉, 刘 峰, 赵 霞, 等. 青海省表层土壤属性数字制图[J]. 土壤通报, 2019, 50(3): 505 − 513. [23] 陈颂超. 色季拉山土壤表层有机碳空间分布特征及数字制图研究[D]. 杭州: 浙江大学, 2016: 43-45. [24] Genuer R, Poggi J M, Tuleau-Malot C. Variable selection using random forests[J]. Pattern Recognition Letters, 2010, 31(14): 2225 − 2236. doi: 10.1016/j.patrec.2010.03.014 [25] 全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992. [26] 钟晓兰, 周生路, 李江涛, 等. 长江三角洲地区土壤重金属污染的空间变异特征−以江苏省太仓市为例[J]. 土壤学报, 2007, (1): 33 − 40. [27] Cambardella C A, Moorman T B, Novak J M, et al. Field-scale variability of soil properties in Central Iowa Soils[J]. Soil Science Society of America Journal, 1994, 58(5): 1501 − 1511. doi: 10.2136/sssaj1994.03615995005800050033x [28] 李维友, 段良霞, 谢红霞, 等. 基于条件拉丁超立方抽样的县域耕地土壤有机质空间插值合理样本密度的确定[J]. 土壤通报, 2022, 53(3): 505 − 513. [29] 孙文义, 郭胜利, 周小刚. 黄土丘陵沟壑区地形和土地利用对深层土壤有机碳的影响[J]. 环境科学, 2010, 31(11): 2740 − 2747. [30] Hu B F, Zhou Q, He C Y, et al. Spatial variability and potential controls of soil organic matter in the Eastern Dongting Lake Plain in southern China[J]. Journal of Soils and Sediments, 2021, 21(8): 2791 − 2804. doi: 10.1007/s11368-021-02906-1 [31] Bai Y X, Zhou Y C. The main factors controlling spatial variability of soil organic carbon in a small karst watershed, Guizhou Province, China[J]. Geoderma, 2020, 357: 113938. doi: 10.1016/j.geoderma.2019.113938 [32] 张 欣, 李梦佳, 刘洪斌, 等. 丘陵区耕地土壤剖面有机质含量分布特征及其影响因素分析[J]. 长江流域资源与环境, 2020, 29(12): 2696 − 2708. [33] Li C, Cao Z, Chang J, et al. Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibetan alpine meadow[J]. Catena, 2017, 156: 139 − 148. doi: 10.1016/j.catena.2017.04.007 [34] 杨玉婷. 西北地区耕地土壤有机质空间分布特征分析[D]. 杨凌: 西北农林科技大学, 2019: 32 - 33. [35] 王立刚, 杨 黎, 贺 美, 等. 全球黑土区土壤有机质变化态势及其管理技术[J]. 中国土壤与肥料, 2016, (6): 1 − 7. [36] 连 纲, 郭旭东, 傅伯杰, 等. 黄土丘陵沟壑区县域土壤有机质空间分布特征及预测[J]. 地理科学进展, 2006, (2): 112 − 122. doi: 10.11820/dlkxjz.2006.02.013 [37] 罗由林, 李启权, 王昌全, 等. 四川省仁寿县土壤有机碳空间分布特征及其主控因素[J]. 中国生态农业学报, 2015, 23(1): 34 − 42. [38] 闫芳芳, 张瑞平, 刘余, 等. 攀西山区植烟土壤 pH 和有机质含量特征与关系研究. 土壤, 2021, 53(6): 1318–1324. [39] 许信旺, 潘根兴, 曹志红, 等. 安徽省土壤有机碳空间差异及影响因素[J]. 地理研究, 2007, (06): 1077 − 1086. [40] 管全中, 董大忠, 张华玲, 等. 富有机质页岩生物成因石英的类型及其耦合成储机制: 以四川盆地上奥陶统五峰组—下志留统龙马溪组为例[J]. 石油勘探与开发, 2021, 48(4): 700 − 709. [41] 江西省土地利用管理局. 江西土壤[M]. 北京: 中国农业科技出版社, 1991: 13. [42] 于文睿南, 潘 畅, 郭佳欢, 等. 杉木人工林表土有机质含量及其对土壤养分的影响[J]. 中国生态农业学报(中英文), 2021, 29(11): 1931 − 1939. [43] 李冬初, 黄 晶, 马常宝, 等. 中国农耕区土壤有机质含量及其与酸碱度和容重关系[J]. 水土保持学报, 2020, 34(6): 252 − 258. [44] 张晗, 赵小敏, 朱美青, 等, 近30年南方丘陵山区耕地土壤养分时空演变特征——以江西省为例[J]. 水土保持研究, 2018, 25(2): 58-65 + 71 + 2. [45] Sellan G, Thompson J, Majalap N, et al. Impact of soil nitrogen availability and pH on tropical heath forest organic matter decomposition and decomposer activity[J]. Pedobiologia - Journal of Soil Ecology, 2020, 80: 150645. [46] Motavalli P P, Palm C A, Parton W J, et al. Soil pH and organic C dynamics in tropical forest soils: evidence from laboratory and simulation studies[J]. Soil Biology and Biochemistry, 1995, 27(12): 1589 − 1599. doi: 10.1016/0038-0717(95)00082-P [47] Tonon G, Sohi S, Francioso O, et al. Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK[J]. European Journal of Soil Science, 2010, 61(6): 970 − 979. doi: 10.1111/j.1365-2389.2010.01310.x [48] 李廷亮, 李 顺, 谢英荷, 等. 不同施肥措施对晋南旱塬麦田土壤碳氮变化的影响[J]. 灌溉排水学报, 2018, 37(11): 43 − 49. [49] 刘兰清. 秸秆还田和氮肥对土壤理化性质及作物产量的影响研究[D]. 杨凌: 西北农林科技大学, 2018: 38 − 39. [50] 高青海, 贾双双, 郭远远. 秸秆集中深还田对设施连作土壤微生物区系和甜瓜根系生长的影响[J]. 生态学杂志, 2016, 35(6): 1447 − 1452. [51] Wei L, Ge T D, Zhu Z K, et al. Paddy soils have a much higher microbial biomass content than upland soils: A review of the origin, mechanisms, and drivers[J]. Agriculture, Ecosystems and Environment, 2022, 326: 107798. doi: 10.1016/j.agee.2021.107798 [52] 李凤博, 牛永志, 高文玲, 等. 耕作方式和秸秆还田对直播稻田土壤理化性质及其产量的影响[J]. 土壤通报, 2008, 39(3): 549 − 552. [53] 张叶叶, 莫 非, 韩 娟, 等. 秸秆还田下土壤有机质激发效应研究进展[J]. 土壤学报, 2021, 58(06): 1381 − 1392. [54] 高日平, 赵思华, 刁生鹏, 等. 秸秆还田对黄土风沙区土壤微生物、酶活性及作物产量的影响[J]. 土壤通报, 2019, 50(6): 1370 − 1377. [55] Jin Z Q, Shah T, Zhang L, et al. Effect of straw returning on soil organic carbon in rice–wheat rotation system: a review[J]. Food and Energy Security, 2020, 9(2): e200. [56] 庞 喆, 王启龙. 不同灌溉量对土壤理化性质及水稻生长发育的影响[J]. 灌溉排水学报, 2019, 38(S2): 37 − 41. [57] 韩笑. 农田管理措施对土壤碳库和温室气体排放的影响[D]. 北京: 中国农业大学, 2018. [58] Zhang X, Xiao G M, Bol R, et al. Influences of irrigation and fertilization on soil N cycle and losses from wheat-maize cropping system in northern China[J]. Environmental Pollution, 2021, 278: 116852. doi: 10.1016/j.envpol.2021.116852 [59] 黄昌勇, 徐建明. 土壤学(第三版)[M]. 北京: 中国农业出版社, 2010: 32-34. [60] 赵 英, 郭旭新, 樊会芳, 等. 不同灌溉方式对猕猴桃园土壤团聚体结构和养分的影响[J]. 水土保持学报, 2021, 35(3): 320 − 325. [61] 万 辰, 马瑛骏, 张克强, 等. 洱海流域不同有机肥替代对土壤理化性质及油菜产量的影响[J]. 农业环境科学学报. 2021, 40(11): 2494 − 2502. [62] 柳 影, 彭 畅, 张会民, 等. 长期不同施肥条件下黑土的有机质含量变化特征[J]. 中国土壤与肥料, 2011, (5): 7 − 11. [63] 潘世娟. 长期定位施肥条件下水田土壤有机质和全氮累积变化研究[D]. 杨凌: 西北农林科技大学, 2011: 39. [64] 蓝贤瑾, 吕真真, 刘秀梅, 等. 长期施肥对红壤性水稻土颗粒有机质和矿物结合态有机质含量与化学组成的影响[J]. 土壤, 2021, 53(1): 140 − 147. [65] Liu B, Xia H, Jiang C C, et al. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China[J]. Science of the Total Environment, 2022, 841: 156608. doi: 10.1016/j.scitotenv.2022.156608 [66] Su Y Z, Fang W, Suo D R, et al. Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat–wheat–maize cropping system in northwest China[J]. Nutrient cycling in agroecosystems, 2006, 75: 285 − 295. doi: 10.1007/s10705-006-9034-x [67] 李新爱, 童成立, 蒋 平, 等. 长期不同施肥对稻田土壤有机质和全氮的影响[J]. 土壤, 2006, 38(3): 298 − 303. [68] 聂 军, 郑圣先, 杨曾平, 等. 长期施用化肥、猪粪和稻草对红壤性水稻土物理性质的影响[J]. 中国农业科学, 2010, 43(7): 1404 − 1413. [69] Huang Q H, Li D M, Liu K L, et al. Effects of long-term organic amendments on soil organic carbon in a paddy field: a case study on red soil[J]. Journal of Integrative Agriculture, 2014, 13(3): 570 − 576. doi: 10.1016/S2095-3119(13)60714-5 [70] Song W F, Shu A P, Liu J A, et al. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil[J]. Pedosphere, 2022, 32(4): 637 − 648. doi: 10.1016/S1002-0160(21)60047-4 -