Composition Characteristics of Clay Minerals from Chestnut and Saline Soil Particles in West Liaohe River Plain
-
摘要:
目的 土壤是由大小和形态各异的颗粒构成,各级颗粒包含丰富的黏土矿物演化信息。明确西辽河平原黏土矿物组成及演化特征有助于了解该地区土壤发育程度及肥力状况,为当地土壤资源合理利用提供理论依据。 方法 以西辽河平原分布较多的栗钙土和盐碱土为研究对象,采集表层土壤并分离不同粒级的土壤颗粒(< 2、0.45 ~ 2、0.1 ~ 0.45 μm),利用X射线衍射(XRD)和化学分析等方法研究黏土矿物组成及相关土壤指标。 结果 XRD分析结果表明,西辽河平原栗钙土和盐碱土的黏土矿物均以伊利石-蛭石-绿泥石为主,栗钙土中伴有少量高岭石和伊/蒙混层矿物,而盐碱土中含有少量高岭石、蒙脱石和1.4 nm过渡矿物;随粒径减小,栗钙土和盐碱土颗粒中绿泥石、高岭石、蒙脱石(伊/蒙混层矿物)和1.4 nm过渡矿物含量均减少,伊利石和蛭石含量增加;伊利石结晶度在栗钙土、盐碱土以及不同粒级的土壤颗粒中也存在明显差异。盐碱土中伊利石结晶程度较栗钙土弱。随粒径减小,栗钙土和盐碱土中伊利石结晶程度均变弱。化学分析结果表明,西辽河平原盐碱土中Na2O的含量明显高于栗钙土,栗钙土和盐碱土颗粒的风化程度均随粒径减小而增加。 结论 化学组成和风化程度的差异导致研究区黏土矿物类型存在从伊利石向蒙脱石过渡的趋势。 Abstract:Objective Soil is composed of particles of different sizes and shapes. The particles at all levels contain valuable information on the evolution of clay minerals. The composition and evolution of clay minerals would contribute to understand the development degree and fertility level of soil, which will provide a theoretical basis for rational utilization of the soil resources in the West Liaohe River plain. Method The chestnut soil and saline soil in the West Liaohe River plain were selected as the research object. Soil particles in different sizes (< 2, 0.45-2, 0.1-0.45 μm) were separated from the surface soil. X-ray diffraction (XRD) and chemical analysis were used to study the composition of clay minerals and related soil indices. Result The XRD results showed that the mineral compositions of the clay particles in chestnut soil and saline-alkali soil were mainly illite, vermiculite and chlorite, with a certain amount of kaolinite and illite-montmorillonite mixed-layer mineral in chestnut soil and a certain amount of kaolinite, montmorillonite and 1.4 nm minerals in saline soil. With the decrease of the particle size in soils, the contents of chlorite, kaolinite, montmorillonite (illite-montmorillonite mixed-layer mineral) and 1.4 nm minerals decreased obviously, with the increasing contents of illite and vermiculite. There are significant differences in illite crystallinity between chestnut soil and saline-alkali soil in particles of different grain sizes. The illite crystallinity of saline soil was weeker than that of chestnut soil. With the decrease of the particle size in soil, the illite crystallinity of saline soil and chestnut soil became weeker. The chemical analysis results showed that the content of Na2O in saline soil was higher than that in chestnut soil. The weathering degree of chestnut soil and saline-alkali soil particles increased with the decrease of particle size. Conclusion The change of the components and weathering degree leads to the transition trend of clay minerals from illite to montmorillonite in the study area. -
Key words:
- Clay minerals /
- Soil particles /
- West Liaohe River plain /
- X-ray diffraction
-
图 2 不同粒径土壤颗粒的XRD图谱。栗钙土0.45 ~ 2 μm颗粒(图2a);栗钙土0.1 ~ 0.45 μm颗粒(图2b);盐碱土0.45 ~ 2 μm颗粒(图2c); 盐碱土0.1 ~ 0.45 μm颗粒(图2d).
Figure 2. XRD patterns of the various sized particle. 0.45 ~ 2 μm chestnut soil particles (Fig. 2a); 0.1 ~ 0.45 μm chestnut soil particles (Fig. 2b); 0.45 ~ 2 μm saline soil particles(Fig. 2c); 0.1 ~ 0.45 μm saline soil particles (Fig. 2d)
表 1 供试土壤的基本理化性质
Table 1. Basic physical and chemical properties of the tested soils
土壤类型
Soil typepH 有机质(g kg–1)
Organic matter含盐量(%)
Saltness盐分离子含量(cmol kg–1) 质地
TextureK + Na + Ca2 + Mg2 + Cl− SO42− CO32− HCO3− 栗钙土 8.64 15.39 0.20 0.38 1.14 0.07 0.71 0.62 0.48 0.07 1.15 砂土 碱土 10.27 4.78 0.76 0.19 2.96 0.76 1.24 0.30 0.33 2.52 1.98 砂壤土 表 2 不同土壤颗粒中黏土矿物类型及相对含量
Table 2. The types and relative contents of clay minerals of the various sized particle fractions (%)
土壤类型
Soil type粒径(μm)
Particle size伊利石
Illite伊蒙混层矿物
Mixed layer mineral蒙脱石
Smectite蛭石
Vermiculite1.4 nm过渡矿物
Transitional mineral绿泥石
Chlorite高岭石
Kaolinite栗钙土 < 2 60.2 2.8 − 15.5 0.8 14.4 6.3 0.45 ~ 2 63.7 1.9 − 17.6 0.3 10.5 6.0 0.1 ~ 0.45 68.5 0.7 − 20.3 0 7.8 2.7 碱土 < 2 46.1 − 5.9 25.3 4.7 10.4 7.6 0.45 ~ 2 53.3 − 4.6 26.6 2.4 7.2 5.9 0.1 ~ 0.45 61.4 − 2.3 27.0 0.9 5.1 3.3 注:“−”表示黏土矿物相对含量低于检测限。 表 3 供试土壤的伊利石/绿泥石比值及伊利石风化特征
Table 3. The illite/chlorite ratio and illite weathering characteristics of the tested soils
土壤类型
Soil type粒径(μm)
Particle size伊/绿比值
I/C伊利石结晶度 伊利石化学指数
ICIIC (HHW) IC (IB) 栗钙土 < 2 4.18 ± 0.16 0.278 ± 0.002 0.453 ± 0.029 0.328 ± 0.012 0.45 ~ 2 6.54 ± 0.43 0.280 ± 0.002 0.460 ± 0.038 0.327 ± 0.011 0.1 ~ 0.45 10.06 ± 0.79 0.296 ± 0.002 0.495 ± 0.017 0.327 ± 0.018 盐碱土 < 2 4.43 ± 0.27 0.302 ± 0.002 0.473 ± 0.016 0.333 ± 0.024 0.45 ~ 2 8.10 ± 0.12 0.299 ± 0.002 0.458 ± 0.020 0.332 ± 0.021 0.1 ~ 0.45 14.98 ± 043 0.317 ± 0.002 0.502 ± 0.018 0.333 ± 0.015 注:HHW(half height width)为半高宽;IB(integral breath)为积分宽度 表 4 供试土壤颗粒的化学组成
Table 4. Chemical compositions of the tested soils
土壤类型
Soil type粒径(μm)
Particle sizeSiO2 Al2O3 Fe2O3 TiO2 MnO CaO MgO K2O Na2O LOI SiO2/Al2O3 SiO2/R2O3 (g kg–1) 栗钙土 < 2 519.0 228.8 82.4 8.2 1.9 20.7 30.2 30.3 3.6 83.4 3.85 3.13 0.45 ~ 2 524.7 221.4 89.0 9.7 1.8 10.2 22.4 26.3 18.6 86.1 4.02 3.20 0.1 ~ 0.45 502.8 222.5 75.8 6.6 1.7 11.5 19.6 21.5 16.5 84.9 3.84 3.15 碱土 < 2 495.1 207.3 109.1 8.4 1.5 3.1 31.8 29.7 30.1 85.7 4.05 3.03 0.45 ~ 2 475.7 238.7 98.1 8.7 1.5 2.3 25.7 33.5 21.9 82.9 3.38 2.68 0.1 ~ 0.45 495.8 256.8 88.4 8.6 1.5 2.7 27.9 28.9 25.3 81.8 3.28 2.69 注:LOI为烧矢量 表 5 供试土壤的选择性溶解分析
Table 5. Selective dissolution analysis of the tested soils
土壤类型
Soil type粒径(μm)
Particle size游离铁(g kg–1)
Fed游离铝(g kg–1)
Ald非晶形铁(g kg–1)
Feo非晶形铝(g kg–1)
Alo铁游离度
Fed/Fet铁活化度
Feo/Fed栗钙土 < 2 19.77 1.48 9.09 1.39 0.24 0.46 0.45 ~ 2 16.71 0.98 7.21 0.54 0.18 0.43 0.1 ~ 0.45 20.42 1.60 9.13 1.71 0.26 0.45 碱土 < 2 26.18 3.21 6.02 3.13 0.24 0.23 0.45 ~ 2 23.35 2.55 5.11 1.15 0.23 0.22 0.1 ~ 0.45 27.26 3.38 6.17 3.36 0.30 0.23 -
[1] 王晓光, 于孟文, 李 志. 西辽河平原环境地质问题与可持续发展[J]. 地质与资源, 2004, 13(2): 116 − 118. doi: 10.3969/j.issn.1671-1947.2004.02.009 [2] 魏 样. 黏土矿物在土壤改良中的应用分析[J]. 南方农业, 2019, 13(6): 192 − 193. doi: 10.19415/j.cnki.1673-890x.2019.06.098 [3] 刘 萌, 樊 军, 付 威, 等. 添加外源有机物料和黏土矿物对菠菜生长及土壤理化性质的影响[J]. 灌溉排水学报, 2022, 41(6): 21 − 30. doi: 10.13522/j.cnki.ggps.2021567 [4] 雷加容, 何毓蓉, 余 敖. 紫色土无机胶体与土壤肥力[J]. 四川农业大学学报, 2004, 22(3): 233 − 238. doi: 10.3969/j.issn.1000-2650.2004.03.009 [5] Kome G K, Enang R K, Tabi F O, et al. Influence of clay minerals on some soil fertility attributes: A Review[J]. 土壤科学期刊(英文), 2019, 9(9): 155 − 188. [6] 张铭杰, 张 昱, 李小虎, 等. 干旱半干旱地区土壤矿物组成特征及其环境意义[J]. 兰州大学学报: 自然科学版, 2007, 43(3): 1 − 7. [7] 万琳琪, 朱丽东, 彭淑贞, 等. 鲁中山地北麓黄土-古土壤粘土矿物组成及古环境意义[J]. 第四纪研究, 2020, 40(6): 1522 − 1531. doi: 10.11928/j.issn.1001-7410.2020.06.13 [8] 姚乃慈, 赵旻爽, 张志丹, 等. 不同气候带森林土壤粘粒矿物XRD物相分析[J]. 矿物学报, 2021, 41(6): 668 − 678. doi: 10.16461/j.cnki.1000-4734.2021.41.061 [9] 刘智杰, 黄 丽, 李 峰, 等. 长期施肥对土壤颗粒粘粒矿物组成及其演变特征的影响[J]. 矿物学报, 2018, (5): 563 − 571. doi: 10.16461/j.cnki.1000-4734.2018.38.200 [10] Tsao T M, Chen Y M, Sheu H S, et al. Red soil chemistry and mineralogy reflect uniform weathering environments in fluvial sediments, Taiwan[J]. Journal of Soils& Sediments, 2012, (12): 1054 − 1065. [11] 王 楠, 姚佳佳, 高彦征, 等. 黄棕壤中不同粒径组分的提取分级与表征[J]. 中国环境科学, 2012, (12): 2253 − 60. doi: 10.3969/j.issn.1000-6923.2012.12.021 [12] 刘智杰, 董 雪, 刘 凡, 等. 九宫山地带性土壤颗粒中粘粒矿物的特征[J]. 矿物学报, 2018, 38(2): 166 − 175. doi: 10.16461/j.cnki.1000-4734.2018.022 [13] Chou Y M, Song S R, Tsao T M, et al. Identification and tectonic implications of nano-particle quartz (< 50 nm) by synchrotron X-ray diffraction in the Chelungpu fault gouge, Taiwan[J]. Tectonophysics, 2014, s 619–620(Complete): 36–43. [14] 鲍士旦. 土壤农化分析. 3版[M]. 土壤农化分析. 3版, 2000. [15] 李学垣. 全国高等农业院校教材 土壤化学及实验指导 (土壤与农化专业用)[M]. 1997. [16] 谢海霞. 天山北坡山盆系统土壤黏土矿物特征及其对成土环境的响应[D]. 华中农业大学, 2019. [17] 鲁如坤. 土壤农业化学分析方法[M]. 土壤农业化学分析方法, 2000. [18] 冯 君, 郑庆福, 隋振民, 等. 松嫩平原苏打盐渍土表层土壤黏粒矿物的组成分析[J]. 世界地质, 2020, 39(2): 471 − 478. doi: 10.3969/j.issn.1004-5589.2020.02.023 [19] Zhao L, Ji J, Chen J, et al. Variations of illite/chlorite ratio in Chinese loess sections during the last glacial and interglacial cycle: Implications for monsoon reconstruction[J]. Geophysical Research Letters, 2005, 32(20): 242 − 57. [20] Werner E. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1998, 139(3–4): 213 − 231. [21] Liu, Z F Colin C, Trentesaux A, et al. Clay mineral records of East Asian monsoon evolution during late Quaternary in the southern South China Sea[J]. Science in China(Series D:Earth Sciences), 2005, 48: 84 − 92. [22] Harald H, Ola K, Roland P. A technique for modeling transport/conversion processes applied to smectite-to-illite conversion in HLW buffers[J]. Engineering Geology, 1997, 47(4): 367 − 78. doi: 10.1016/S0013-7952(96)00120-2 [23] Xie H, He S, Huang C, et al. Origin of Smectite in Salinized Soil of Junggar Basin in Xinjiang of China[J]. Multidisciplinary Digital Publishing Institute, 2019, 9(2): 100. [24] Carnicelli S. Weathering of chlorite to a low charge expandable mineral in a Spodosol on the Apennine mountains-Italy[J]. Clays & Clay Minerals, 1997, 45(1): 28 − 41. [25] Egli M, Mirabella A, Fitze P. Clay mineral formation in soils of two different chronosequences in the Swiss Alps[J]. Geoderma, 2001, 104(1-2): 145 − 75. doi: 10.1016/S0016-7061(01)00079-9 [26] Simakova Y S. The influence of anthropogenic salinization on the clay mineralogy of Seriogovo soils[J]. Acta Crystallographica, 2007, 63(a1): 271. [27] Huang C Q, Zhao W, Liu F, et al. Environmental significance of mineral weathering and pedogenesis of loess on the southernmost Loess Plateau, China[J]. Geoderma, 2011, 163(3–4): 219 − 26. [28] Chamley H. Clay Sedimentology[M]. Springer, 1989. [29] Liu Z, Colin C, Li X, et al. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport[J]. Marine Geology, 2010, 277(1-4): 48 − 60. doi: 10.1016/j.margeo.2010.08.010 -