Advance in Approaches of Determining Form and Mineralization Rate of Soil Organic Phosphorus
-
摘要: 大多数土壤的有机磷(Po)占全磷30% ~ 65%,矿化后可被植物直接利用,成为生态系统生物有效磷重要来源。准确测定Po形态组成及矿化速率是科学利用土壤Po库的基础。本文目的是对目前常见土壤Po形态组成和矿化速率测定技术的优缺点、适用范围进行总结分析,为研究人员选择合适测定技术提供依据。搜集并分析近20年来中国知网和Web of Science数据库中92篇关于Po形态组成与矿化速率方法研究论文。介绍了3种常用Po形态测定技术(连续分级法、酶水解法和核磁共振法)和近年来兴起的3种Po矿化速率测定技术(同位素稀释技术、连续观测-差减法和模型法)的基本原理,分析了几种技术适用范围、主要优缺点和互补性。尽管目前仍无针对土壤Po形态组成和矿化速率“最佳”测定方法,但是,研究人员可根据待测土壤理化性质和实验目的选择“合适”的测定技术。提出未来应在酶水解技术标准化、13C和31P核磁共振技术联用、发展包含植物因素Po矿化速率测定技术、联用形态和矿化速率测定技术等方面开展深入研究。
-
关键词:
- 土壤有效磷 /
- 有机磷矿化 /
- 植酸磷 /
- Hedley连续分级法 /
- 31P核磁共振波谱法 /
- 生物化学矿化 /
- 磷酸酶
Abstract: As an important component of total soil phosphorus (P), mineralized organic P (Po) is a major source of replenishing bioavailable P pool in many terrestrial ecosystems. There are many forms of Po with different bioavailability in soil. These forms of Po also differ in their ability of resisting the hydrolysis catalyzed by phosphatases. It is therefore necessary to accurately determine the forms and mineralization rates of soil Po to understand the biogeochemical cycling of Po and to use the legacy Po in soil. The aims were to clarify the advantages, disadvantages, scopes of application of several most commonly used approaches of determining the forms and mineralization rate of soil Po. The selected 92 papers in the databases of CNKI and the Web of Science in recent 20 years with a topic of the forms and mineralization rate of soil Po were discussed. Three approaches of determining the forms of soil Po were reviewed, including sequential fractionation procedure, enzyme addition assays and 31P nuclear magnetic resonance spectroscopy. There is no a ‘best’ approach of determining the forms and mineralization rate of soil Po. However, scientists can select a ‘proper’ one according to the physical-chemical properties of targeted soils and experimental goals. It is recommended to carry out more researches on the following fields: developing a standard procedure of enzyme addition assays, jointly utilizing 13C and 31P nuclear magnetic resonance spectroscopy to identify more unsolved Po forms, modifying methods of determining mineralization rate of soil Po to reflect the effects of plants, and combinedly utilizing approaches of determining the forms and mineralization rate to understand the mechanisms of transformation and mineralization of soil Po. -
表 1 土壤有机P形态测定主要方法优缺点比较
Table 1. Comparison of advantages and disadvantages of main methods for determining soil organic P forms
方法
Method原理
Principle优点
Advantage缺点
Disadvantage适用范围
Application scope连续分级法 溶P能力不同的浸提剂对P形态进行区分,依次采用中性、弱酸性、中酸性、强酸性提取剂对土壤无机P不同形态进行提取,与全P的差值即为Po含量。 可获得不同形态Po总量;能有效反映土壤Po对有效P库的补充潜力;适用性强、费用低廉。 仅“操作性”地划分P形态;无法获取Po的化学形态;步骤繁琐、耗时较长。 适用于各种土壤;可用于评估Po的有效性。 酶水解法 利用磷酸酶对磷酸酯类化合物催化后可得到正磷酸盐,结合磷酸酶底物的具体特征以及无机P的具体数量,从而推断样品中Po的含量与形态组成。 具有较为明确的生物化学机理;能很好地反映土壤Po的生物有效性和水解特性;能表征土壤Po在酶作用下释放有效P的潜力;专一性强、高效、可批量测定。 只能对Po形态进行大类划分(如类简单单酯磷、类双酯磷);酶易失活、且用量多、价格高、成本偏高。 适合于不稳定态Po的测定;可用于评估Po的有效性;结合土壤理化性质,有助于制定调控Po形态转化的措施。 液相31P NMR 31P原子核的自旋量子数为半整数,在外加磁场条件下可以产生核磁共振现象。不同形态Po的原子核因屏蔽效应不同而出现不同的化学位移值,因此可通过分析波谱图上的化学位移值来辨识具有不同空间结构的有机或无机P化合物。 图谱丰富、能全面地从分子水平上表征土壤Po的形态组成;能同时检测多种Po;操作简单、需样量少、样品检测灵敏度高、精确度高。 碱性浸提液会导致部分Po降解,从而低估土壤中双酯磷的含量;耗时长,成本高;不适宜大规模常规分析。 适用于土壤样品中的各种P形态的定性和定量鉴定;较适宜的Po浓度范围:大于30 μg g–1干土。 固相31P NMR 同液相31P NMR。 不需要复杂的预处理和提取,可直接测定。 Po浓度较低土壤测定耗时长;灵敏度和光谱信噪比低。 顺磁物质含量较低的土壤;适用的Po浓度范围:大于100 μg g–1干土。 表 2 土壤有机P矿化速率测定方法优缺点比较
Table 2. Comparison of advantages and disadvantages of determination methods for soil organic P mineralization rate
方法
Method优点
Advantage缺点
Disadvantage适用范围
Application scope同位素稀释法 成本低、耗时短;效率高、制样简单;灵敏度高、准确率高。 结果受培养条件和时间的影响较大;受有效P浓度和微生物量P影响会降低准确性;具有放射性损害、实验步骤繁琐。 适用于大多数土壤类型、基于IEK的同位素方法不适用于原位研究。 连续监测-差减法 操作简单、成本低廉。 实验时间较长;适用土壤类型较少。 适用于有机层及一些吸附能力极弱的土壤。可用于原位监测。 模型法 应用范围广;评价标准统一,具有客观性。 不同环境条件下的土壤须开展前期实验来建立同位素稀释法所测矿化速率与替代指标之间的定量关系。 适用于大多数土壤类型;可用于原位研究。 -
[1] Westheimer F H. Why nature chose phosphates[J]. Science, 1987, 235(4793): 1173 − 1178. doi: 10.1126/science.2434996 [2] Kvakić M, Pellerin S, Ciais P, et al. Quantifying the limitation to world cereal production due to soil phosphorus status[J]. Global Biogeochemical Cycles, 2018, 32(1): 143 − 157. doi: 10.1002/2017GB005754 [3] Du E, Terrer C, Pellegrini A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation[J]. Nature Geoscience, 2020, 13(3): 221 − 226. doi: 10.1038/s41561-019-0530-4 [4] Zhou J, Bing H, Wu Y, et al. Weathering of primary mineral phosphate in the early stages of ecosystem development in the Hailuogou Glacier foreland chronosequence[J]. European Journal of Soil Science, 2018, 69(3): 450 − 461. doi: 10.1111/ejss.12536 [5] Zhou J, Wu Y, Prietzel J, et al. Changes of soil phosphorus speciation along a 120-year soil chronosequence in the Hailuogou Glacier retreat area (Gongga Mountain, SW China)[J]. Geoderma, 2013, 195: 251 − 259. [6] Zhou J, Wu Y, Turner B L, et al. Transformation of soil organic phosphorus along the Hailuogou post-glacial chronosequence, southeastern edge of the Tibetan Plateau[J]. Geoderma, 2019, 352: 414 − 421. doi: 10.1016/j.geoderma.2019.05.038 [7] Tabatabai M A. Soil organic phosphorus: a review of world literature. 1987[J]. Soil Science, 1989, 147(1): 77. doi: 10.1097/00010694-198901000-00013 [8] Turner B L. Resource partitioning for soil phosphorus: a hypothesis[J]. Journal of Ecology, 2008, 96(4): 698 − 702. doi: 10.1111/j.1365-2745.2008.01384.x [9] Sulieman S, Mühling K H. Utilization of soil organic phosphorus as a strategic approach for sustainable agriculture[J]. Journal of Plant Nutrition and Soil Science, 2021, 184(3): 311 − 319. doi: 10.1002/jpln.202100057 [10] McLaren T I, Smernik R J, McLaughlin M J, et al. The chemical nature of soil organic phosphorus: A critical review and global compilation of quantitative data[J]. Advances in Agronomy, 2020, 160(1): 51 − 124. [11] Condron L M, Turner B L, Cade‐Menun B J. Chemistry and dynamics of soil organic phosphorus // T Sims, A N Sharpley. Phosphorus: Agriculture and the Environment, Agronomy Monograph No. 46. [C], Segoe Rd. , Madison, WI 53711, USA: the American Society of Agronomy, Inc. , Crop Science Society of America, Inc. , Soil Science Society of America, Inc. , 2005: 87−121. [12] Kruse J, Abraham M, Amelung W, et al. Innovative methods in soil phosphorus research: A review[J]. Journal of Plant Nutrition and Soil Science, 2015, 178(1): 43 − 88. doi: 10.1002/jpln.201400327 [13] 冯跃华, 张杨珠. 土壤有机磷分级研究进展[J]. 湖南农业大学学报(自然科学版), 2002, 28(3): 247 − 252. doi: 10.13331/j.cnki.jhau.2002.03.025 [14] 赵少华, 宇万太, 张 璐, 等. 土壤有机磷研究进展[J]. 应用生态学报, 2004, (11): 2189 − 2194. doi: 10.3321/j.issn:1001-9332.2004.11.041 [15] 汪 洪, 宋书会, 张金尧, 等. 土壤磷形态组分分级及 31 P-NMR 技术应用研究进展[J]. 植物营养与肥料学报, 2017, 23(2): 512 − 523. doi: 10.11674/zwyf.16066 [16] 张艾明, 陈振华, 陈利军, 等. 冷冻干燥过程中 pH 调节, 缓冲液添加对土壤 31P 核磁共振谱图的影响[J]. 土壤通报, 2013, 44(2): 328 − 332. [17] 张 林, 吴 宁, 吴 彦, 等. 土壤磷素形态及其分级方法研究进展[J]. 应用生态学报, 2009, 20(7): 1775 − 1782. doi: 10.13287/j.1001-9332.2009.0242 [18] Achat D L, Augusto L, Bakker M R, et al. Microbial processes controlling P availability in forest spodosols as affected by soil depth and soil properties[J]. Soil Biology and Biochemistry, 2012, 44(1): 39 − 48. doi: 10.1016/j.soilbio.2011.09.007 [19] Bünemann E K. Assessment of gross and net mineralization rates of soil organic phosphorus–A review[J]. Soil Biology and Biochemistry, 2015, 89: 82 − 98. doi: 10.1016/j.soilbio.2015.06.026 [20] Bowman R A, Cole C V. An exploratory method for fractionation of organic phosphorus from grassland soils[J]. Soil Science, 1978, 125(2): 95 − 101. doi: 10.1097/00010694-197802000-00006 [21] Hedley, M. J., Stewart, J. W. B., Chauhan, B. S., Changes in inorganic and organic soil−phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46: 970 − 976. doi: 10.2136/sssaj1982.03615995004600050017x [22] 熊恒多, 李世俊, 范业宽. 酸性水稻土有机磷分组法的探讨[J]. 土壤学报, 1993, (04): 390 − 399. doi: 10.3321/j.issn:0564-3929.1993.04.006 [23] Ivanoff D B, Reddy K R, Robinson S. Chemical fractionation of organic phosphorous in selected histosol[J]. Soil Science, 1998, l63(1): 36 − 45. [24] Tiessen H, Moir J O. Characterization of available P by sequential extraction. // M R Carter, E G Gregorich. Soil Sampling and Methods of Analysis[C], Boca Raton: Lewis Publishers, 1993: 75−86. [25] Barrow N J, Sen A, Roy N, et al. The soil phosphate fractionation fallacy[J]. Plant and Soil, 2021, 459(1): 1 − 11. [26] 贺 铁, 李世俊. Bowman−Cole 土壤有机磷分组法的探讨[J]. 土壤学报, 1987, 24(2): 152 − 159. [27] Gu C, Margenot A J. Navigating limitations and opportunities of soil phosphorus fractionation[J]. Plant and Soil, 2021, 459(1): 13 − 17. [28] Wu Y H, Prietzel J, Zhou J, et al. Soil phosphorus bioavailability assessed by XANES and Hedley sequential fractionation technique in a glacier foreland chronosequence in Gongga Mountain, Southwestern China[J]. Science China Earth Sciences, 2014, 57(8): 1860 − 1868. doi: 10.1007/s11430-013-4741-z [29] He X, Zhou J, Wu Y, et al. Leaching disturbed the altitudinal distribution of soil organic phosphorus in subalpine coniferous forests on Mt. Gongga, SW China[J]. Geoderma, 2018, 326: 144 − 155. doi: 10.1016/j.geoderma.2018.04.015 [30] Zhou J, Li X L, Peng F, et al. Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorus‐acquisition strategies in an alpine meadow on the Qinghai‐Tibetan Plateau[J]. Global Change Biology, 2021, 27(24): 6578 − 6591. doi: 10.1111/gcb.15914 [31] Sun H, Wu Y, Zhou J, et al. Microorganisms drive stabilization and accumulation of organic phosphorus: An incubation experiment[J]. Soil Biology and Biochemistry, 2022: 108750. [32] Bünemann E K. Enzyme additions as a tool to assess the potential bioavailability of organically bound nutrients[J]. Soil Biology and Biochemistry, 2008, 40(9): 2116 − 2129. doi: 10.1016/j.soilbio.2008.03.001 [33] Jarosch K A, Doolette A L, Smernik R J, et al. Characterisation of soil organic phosphorus in NaOH-EDTA extracts: a comparison of 31P NMR spectroscopy and enzyme addition assays[J]. Soil Biology and Biochemistry, 2015, 91: 298 − 309. doi: 10.1016/j.soilbio.2015.09.010 [34] Turner B L, McKelvie I D, Haygarth P M. Characterisation of water−extractable soil organic phosphorus by phosphatase hydrolysis[J]. Soil Biology and Biochemistry, 2002, 34(1): 27 − 35. doi: 10.1016/S0038-0717(01)00144-4 [35] Annaheim K E, Rufener C B, Frossard E, et al. Hydrolysis of organic phosphorus in soil water suspensions after addition of phosphatase enzymes[J]. Biology and Fertility of Soils, 2013, 49(8): 1203 − 1213. doi: 10.1007/s00374-013-0819-1 [36] Nesper M, Bünemann E K, Fonte S J, et al. Pasture degradation decreases organic P content of tropical soils due to soil structural decline[J]. Geoderma, 2015, 257: 123 − 133. [37] Keller M, Oberson A, Annaheim K E, et al. Phosphorus forms and enzymatic hydrolyzability of organic phosphorus in soils after 30 years of organic and conventional farming[J]. Journal of Plant Nutrition and Soil Science, 2012, 175(3): 385 − 393. doi: 10.1002/jpln.201100177 [38] Jarosch K A, Kandeler E, Frossard E, et al. Is the enzymatic hydrolysis of soil organic phosphorus compounds limited by enzyme or substrate availability?[J]. Soil Biology and Biochemistry, 2019, 139: 107628. doi: 10.1016/j.soilbio.2019.107628 [39] Newman R, Tate K. Soil phosphorus characterisation by 31P nuclear magnetic resonance[J]. Communications in Soil Science and Plant Analysis, 1980, 11(9): 835 − 842. doi: 10.1080/00103628009367083 [40] Turner B L, Cade-Menun B J, Westermann D T. Organic phosphorus composition and potential bioavailability in semi‐arid arable soils of the western United States[J]. Soil Science Society of America Journal, 2003, 67(4): 1168 − 1179. doi: 10.2136/sssaj2003.1168 [41] Dougherty W J, Smernik R J, Chittleborough D J. Application of spin counting to the solid-state P NMR analysis of pasture soils with varying phosphorus content[J]. Soil Science Society of America Journal, 2005, 69: 2058 − 2070. doi: 10.2136/sssaj2005.0017 [42] Cade-Menun B J. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy[J]. Talanta, 2005, 66(2): 359 − 371. doi: 10.1016/j.talanta.2004.12.024 [43] Makarov M, Haumaier L, Zech W. The nature and origins of diester phosphates in soils: a 31P-NMR study[J]. Biology and fertility of soils, 2002, 35(2): 136 − 146. doi: 10.1007/s00374-002-0454-8 [44] Turner B L, Condron L M, Richardson S J, et al. Soil organic phosphorus transformations during pedogenesis[J]. Ecosystems, 2007, 10(7): 1166 − 1181. doi: 10.1007/s10021-007-9086-z [45] Turner B L. Soil organic phosphorus in tropical forests: an assessment of the NaOH-EDTA extraction procedure for quantitative analysis by solution 31P NMR spectroscopy[J]. European Journal of Soil Science, 2008, 59(3): 453 − 466. doi: 10.1111/j.1365-2389.2007.00994.x [46] Doolette A L, Smernik R J, Dougherty W J. Spiking improved solution phosphorus‐31 nuclear magnetic resonance identification of soil phosphorus compounds[J]. Soil Science Society of America Journal, 2009, 73(3): 919 − 927. doi: 10.2136/sssaj2008.0192 [47] Vincent A G, Vestergren J, Gröbner G, et al. Soil organic phosphorus transformations in a boreal forest chronosequence[J]. Plant and Soil, 2013, 367(1): 149 − 162. [48] Zhong H, Zhou J, Azrul A, et al. , Xylomelum occidentale (Proteaceae) accesses relatively mobile soil organic phosphorus without releasing carboxylates[J], Journal of Ecology, 2021, 109: 246−259. [49] Turner B L, Cade-Menun B J, Condron L M, et al. Extraction of soil organic phosphorus[J]. Talanta, 2005, 66(2): 294 − 306. doi: 10.1016/j.talanta.2004.11.012 [50] Cade-Menun B, Liu C W. Solution phosphorus‐31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: A review of sample preparation and experimental parameters[J]. Soil Science Society of America Journal, 2014, 78(1): 19 − 37. doi: 10.2136/sssaj2013.05.0187dgs [51] Reusser J E, Tamburini F, Neal A L, et al. The molecular size continuum of soil organic phosphorus and its chemical associations[J]. Geoderma, 2022, 412: 115716. doi: 10.1016/j.geoderma.2022.115716 [52] McLaren T I, Verel R, Frossard E. Soil phosphomonoesters in large molecular weight material comprise multiple components[J]. Soil Science Society of America Journal, 2022, 86(2): 345 − 357. doi: 10.1002/saj2.20347 [53] Vestergren J, Vincent A G, Jansson M, et al. High-resolution characterization of organic phosphorus in soil extracts using 2D 1H-31P NMR correlation spectroscopy[J]. Environmental Science & Technology, 2012, 46(7): 3950 − 3956. [54] De Sena A, Madramootoo C A, Whalen J K, et al. Nucleic acids are a major pool of hydrolyzable organic phosphorus in arable organic soils of Southern Ontario, Canada[J]. Biology and Fertility of Soils, 2022, 58(1): 7 − 16. doi: 10.1007/s00374-021-01603-y [55] 姜 一, 步 凡, 张 超, 等. 土壤有机磷矿化研究进展[J]. 南京林业大学学报(自然科学版), 2014, 38(03): 160 − 166. [56] Grierson P F, Comerford N B, Jokela E J. Phosphorus mineralization kinetics and response of microbial phosphorus to drying and rewetting in a Florida spodosol[J]. Soil Biology and Biochemistry, 1998, 30(10−11): 1323−1331. [57] Oehl F, Oberson A, Sinaj S, et al. Organic phosphorus mineralization studies using isotopic dilution techniques[J]. Soil Science Society of America Journal, 2001, 65(3): 780 − 787. doi: 10.2136/sssaj2001.653780x [58] Walbridge M R, Vitousek P M. Phosphorus mineralization potentials in acid organic soils: processes affecting 32PO43-isotope dilution measurements[J]. Soil Biology and Biochemistry, 1987, 19(6): 709 − 717. doi: 10.1016/0038-0717(87)90053-8 [59] Bünemann E K, Marschner P, McNeill A M, et al. Measuring rates of gross and net mineralisation of organic phosphorus in soils[J]. Soil Biology and Biochemistry, 2007, 39(4): 900 − 913. doi: 10.1016/j.soilbio.2006.10.009 [60] Achat D L, Bakker M R, Augusto L, et al. Evaluation of the phosphorus status of P-deficient podzols in temperate pine stands: combining isotopic dilution and extraction methods[J]. Biogeochemistry, 2009, 92(3): 183 − 200. doi: 10.1007/s10533-008-9283-7 [61] Randriamanantsoa L, Morel C, Rabeharisoa L, et al. Can the isotopic exchange kinetic method be used in soils with a very low water extractable phosphate content and a high sorbing capacity for phosphate ions?[J]. Geoderma, 2013, 200: 120 − 129. [62] Randriamanantsoa L, Frossard E, Oberson A, et al. Gross organic phosphorus mineralization rates can be assessed in a Ferralsol using an isotopic dilution method[J]. Geoderma, 2015, 257: 86 − 93. [63] Frossard E, López-Hernández D, Brossard M. Can isotopic exchange kinetics give valuable information on the rate of mineralization of organic phosphorus in soils?[J]. Soil Biology and Biochemistry, 1996, 28(7): 857 − 864. doi: 10.1016/0038-0717(96)00063-6 [64] Bünemann E K, Oberson A, Liebisch F, et al. Rapid microbial phosphorus immobilization dominates gross phosphorus fluxes in a grassland soil with low inorganic phosphorus availability[J]. Soil Biology and Biochemistry, 2012, 51: 84 − 95. doi: 10.1016/j.soilbio.2012.04.012 [65] Oehl F, Frossard E, Fliessbach A, et al. Basal organic phosphorus mineralization in soils under different farming systems[J]. Soil Biology and Biochemistry, 2004, 36(4): 667 − 675. doi: 10.1016/j.soilbio.2003.12.010 [66] Schneider K D, Voroney R P, Lynch D H, et al. Microbially-mediated P fluxes in calcareous soils as a function of water-extractable phosphate[J]. Soil Biology and Biochemistry, 2017, 106: 51 − 60. doi: 10.1016/j.soilbio.2016.12.016 [67] Di H J, Cameron K C, McLaren R G. Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil: a review of the theory, methodologies, and limitations[J]. Soil Research, 2000, 38(1): 213 − 230. doi: 10.1071/SR99005 [68] Kellogg L E, Bridgham S D, Lopez-Hernández D. A comparison of four methods of measuring gross phosphorus mineralization[J]. Soil Science Society of America Journal, 2006, 70(4): 1349 − 1358. doi: 10.2136/sssaj2005.0300 [69] Mooshammer M, Wanek W, Schnecker J, et al. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter[J]. Ecology, 2012, 93(4): 770 − 782. doi: 10.1890/11-0721.1 [70] Wanek W, Zezula D, Wasner D, et al. A novel isotope pool dilution approach to quantify gross rates of key abiotic and biological processes in the soil phosphorus cycle[J]. Biogeosciences, 2019, 16(15): 3047 − 3068. doi: 10.5194/bg-16-3047-2019 [71] Wyngaard N, Cabrera M L, Jarosch K A, et al. Phosphorus in the coarse soil fraction is related to soil organic phosphorus mineralization measured by isotopic dilution[J]. Soil Biology and Biochemistry, 2016, 96: 107 − 118. doi: 10.1016/j.soilbio.2016.01.022 [72] Pistocchi C, Mészáros É, Tamburini F, et al. Biological processes dominate phosphorus dynamics under low phosphorus availability in organic horizons of temperate forest soils[J]. Soil Biology and Biochemistry, 2018, 126: 64 − 75. doi: 10.1016/j.soilbio.2018.08.013 [73] Achat D L, Bakker M R, Zeller B, et al. Long-term organic phosphorus mineralization in Spodosols under forests and its relation to carbon and nitrogen mineralization[J]. Soil Biology and Biochemistry, 2010, 42(9): 1479 − 1490. doi: 10.1016/j.soilbio.2010.05.020 [74] Polglase P J, Jokela E J, Comerford N B. Mineralization of nitrogen and phosphorus from soil organic matter in southern pine plantations[J]. Soil Science Society of America Journal, 1992, 56(3): 921 − 927. doi: 10.2136/sssaj1992.03615995005600030040x [75] Nziguheba G, Bünemann E K. Organic phosphorus dynamics in tropical agroecosystems. // B L Turner, E Frossard, D S Baldwin. Organic Phosphorus in the Environment[C], Cambridge: CABI Publishing, 2005: 243−268. [76] 赵少华, 宇万太, 张 璐, 等. 东北黑土有机磷的矿化过程研究[J]. 应用生态学报, 2005, 16(10): 1858 − 1861. doi: 10.3321/j.issn:1001-9332.2005.10.012 [77] 陈立新, 姜 一, 步 凡, 等. 有机酸对温带典型森林土壤有机磷含量与矿化的影响[J]. 北京林业大学学报, 2014, 36(3): 75 − 82. doi: 10.13332/j.cnki.jbfu.2014.03.011 [78] Gao X L, Li X G, Zhao L, et al. Regulation of soil phosphorus cycling in grasslands by shrubs[J]. Soil Biology and Biochemistry, 2019, 133: 1 − 11. doi: 10.1016/j.soilbio.2019.02.012 [79] Arenberg M R, Arai Y. Effects of native leaf litter amendments on phosphorus mineralization in temperate floodplain soils[J]. Chemosphere, 2021, 266: 129210. doi: 10.1016/j.chemosphere.2020.129210 [80] Dietrich K, Spohn M, Villamagua M, et al. Nutrient addition affects net and gross mineralization of phosphorus in the organic layer of a tropical montane forest[J]. Biogeochemistry, 2017, 136(2): 223 − 236. doi: 10.1007/s10533-017-0392-z [81] McGill W B, Cole C V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter[J]. Geoderma, 1981, 26(4): 267 − 286. doi: 10.1016/0016-7061(81)90024-0 [82] Ciampitti I A, García F O, Picone L I, et al. Soil carbon and phosphorus pools in field crop rotations in pampean soils of Argentina[J]. Soil Science Society of America Journal, 2011, 75(2): 616 − 625. doi: 10.2136/sssaj2010.0168 [83] Liebisch F, Keller F, Huguenin-Elie O, et al. Seasonal dynamics and turnover of microbial phosphorus in a permanent grassland. Biology and fertility of soils, 2014, 50(3): 465−475. [84] López-Hernández D, Brossard M, Frossard E. P-isotopic exchange values in relation to Po mineralisation in soils with very low P-sorbing capacities[J]. Soil Biology and Biochemistry, 1998, 30(13): 1663 − 1670. doi: 10.1016/S0038-0717(97)00255-1 [85] Spohn M, Kuzyakov Y. Phosphorus mineralization can be driven by microbial need for carbon[J]. Soil Biology and Biochemistry, 2013, 61: 69 − 75. doi: 10.1016/j.soilbio.2013.02.013 [86] McLaren T I, Smernik R J, McLaughlin M J, et al. Complex forms of soil organic phosphorus–a major component of soil phosphorus[J]. Environmental Science & Technology, 2015, 49(22): 13238 − 13245. [87] 孙元宏, 李翠兰, 曹志远, 等. 土壤腐殖物质组分结合态磷素有效性的研究[J]. 土壤通报, 2021, 52(2): 369 − 378. doi: 10.19336/j.cnki.trtb.2019121001 [88] Annaheim K E, Doolette A L, Smernik R J, et al. Long-term addition of organic fertilizers has little effect on soil organic phosphorus as characterized by 31P NMR spectroscopy and enzyme additions[J]. Geoderma, 2015, 257: 67 − 77. [89] García-Oliva F, Merino A, Fonturbel M T, et al. Severe wildfire hinders renewal of soil P pools by thermal mineralization of organic P in forest soil: analysis by sequential extraction and 31P NMR spectroscopy[J]. Geoderma, 2018, 309: 32 − 40. doi: 10.1016/j.geoderma.2017.09.002 [90] Kunito T, Haraguchi S, Hanada K, et al. pH is the dominant factor controlling the levels of phytate-like and DNA-like phosphorus in 0.5 M NaHCO3-extracts of soils: Evaluation with phosphatase-addition approach[J]. Geoderma, 2021, 398: 115113. doi: 10.1016/j.geoderma.2021.115113 [91] Tweedie A, Haygarth P M, Edwards A, et al. Soil phosphorus over a period of agricultural change in Scotland[J]. European Journal of Soil Science, 2021, 72(6): 2457 − 2476. doi: 10.1111/ejss.13179 [92] Helfenstein J, Tamburini F, von Sperber C, et al. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil[J]. Nature Communications, 2018, 9(1): 1 − 9. doi: 10.1038/s41467-017-02088-w -