Effects of Moss Crusts on Soil Enzyme Activities and Contents of Soil Carbon, Nitrogen and Phosphorus in a Karst Rocky Desertification Area of Guizhou
-
摘要:
目的 探索在喀斯特石漠化退化生态系统下苔藓结皮及覆被土壤的养分的变化特征,以期为喀斯特石漠化生态环境修复提供新的理论参考。 方法 以我国贵州典型喀斯特石漠化生态系统-花江石漠化综合治理示范区的苔藓结皮覆被土壤、移除结皮(一年后)以及裸土为研究对象,采用双因素分析方法探讨不同石漠化(无、轻、中、重度)生境下有无结皮覆被及不同土层深度(结皮层、0 ~ 5 cm、5 ~ 10 cm)对土壤酶活性、土壤碳氮磷含量及计量特征的影响。 结果 ①苔藓结皮层土壤脲酶和β-葡萄糖苷酶活性均随着石漠化的等级的升高而升高,而蔗糖酶和碱性磷酸酶则无显著变化;无石漠化区的土壤有机碳含量和碳/氮、碳/磷、氮/磷比值显著高于轻、中、重度石漠化区。②土壤碳氮磷含量及计量特征、酶活性在结皮层与结皮下土层间存在显著差异,结皮层显著高于结皮下0 ~ 5 cm和5 ~ 10 cm土壤。③与苔藓结皮相比,除脲酶活性外,移除结皮一年后的土壤蔗糖酶、碱性磷酸酶、β-葡萄糖苷酶活性、碳氮磷含量及计量特征均有所减少,而与裸土相比则无明显变化。 结论 苔藓结皮的存在提高了其覆被土壤的酶活性及碳氮磷含量,突出了苔藓结皮在退化喀斯特石漠化生境中生态功能的重要性。 Abstract:Objective Exploring the characteristics of nutrient changes in moss crusts and covered soil in karst rocky desertification, and its positive ecological benefits could provide a new theoretical reference for the ecological environment restoration of karst rocky desertification. Method In this paper, soil covered by moss crusts, soils deprived of biocrust-forming mossess (one year later)and bare soils in different levels of rocky desertification (none, light, moderate and severe) in the typical rocky desertification ecosystem –Huajiang rocky desertification area in Guizhou province of China ,were used to investigate the effects of moss crusts on soil enzyme activities, and contents of soil carbon, nitrogen, phosphorus and stoichiometric characteristics of different karst desertification grades (none, light, moderate, and severe) and different soil depths (crust layer, 0-5 cm, and 5-10 cm). Result ① Activities of urease (UE) and β-glucosidase (BG) in moss crust layer increased with the degradation progress of karst desertification. While soil sucrase (SC) and alkaline phosphatase desertification (AKP) did not change significantly. SOC, C/N, C/P, and N/P contents were significantly higher in sample sites of no rocky desertification than those of light, moderate, and sever grades. ② Soil carbon, nitrogen and phosphorus contents and stoichiometric characteristics, enzyme activities (SC, BG, AKP) in crust layer were significantly higher than those in sub-crust layers (0-5 cm and 5-10 cm). ③ Compared with moss crusts, activities of soil SC, AKP, BG and contents of carbon, nitrogen and phosphorus and stoichiometric characteristics decreased significantly one year after crust removal, while did not significantly change compared with bare soil. Conclusion The existence of moss crusts improve soil enzyme activities, and carbon, nitrogen and phosphorus contents, which highlights the important ecological function of moss crusts in degraded karst rocky desertification ecosystems, and its positive ecological benefits could provide a new theoretical reference for the ecological environment restoration of karst rocky desertification. -
表 1 土壤酶活性与土壤化学性质的相关性
Table 1. Correlation between soil enzyme activities and soil chemical properties
蔗糖酶
Sucrase葡萄糖苷酶
β-glucosidase碱性磷酸酶
Alkaline
phosphatase脲酶
Urease全氮
Total
nitrogen全磷
Total
phosphorus有机碳
Soil organic
carbon碳/氮
C/N碳/磷
C/P氮/磷
N/P蔗糖酶 1 0.217* 0.145 −0.007 0.481** 0.305** 0.360** 0.029 0.023 0.037 葡萄糖苷酶 1 0.415** 0.167 0.428** 0.241* 0.495** 0.267** 0.201 0.119 碱性磷酸酶 1 −0.044 0.263** 0.227* 0.357** 0.233* 0.05 −0.061 脲酶 1 −0.049 −0.056 −0.084 −0.026 0.03 0.065 全氮 1 0.360** 0.667** −0.099 0.198 0.360** 全磷 1 0.172 −0.139 −0.579** −0.686** 有机碳 1 0.638** 0.648** 0.401** 碳/氮 1 0.648** 0.184 碳/磷 1 0.84** 氮/磷 1 注:*代表显著相关(P < 0.05); **代表极显著相关(P < 0.01) -
[1] 程 才, 李玉杰, 张远东, 等. 石漠化地区苔藓结皮对土壤养分及生态化学计量特征的影响[J]. 生态学报, 2020, 40(24): 9234 − 9244. [2] 张元明, 王雪芹. 荒漠地表生物土壤结皮形成与演替特征概述[J]. 生态学报, 2010, 30(16): 4484 − 4492. [3] Xiao B, Ma S, Hu K. Moss biocrusts regulate surface soil thermal properties and generate buffering effects on soil temperature dynamics in dryland ecosystem[J]. Geoderma, 2019, 351: 9 − 24. doi: 10.1016/j.geoderma.2019.05.017 [4] 杨建振, 卜崇峰, 张兴昌. 陕北毛乌素沙地生物结皮发育特征的初步研究[J]. 水土保持学报, 2009, 23(6): 162 − 165 + 189. doi: 10.3321/j.issn:1009-2242.2009.06.036 [5] Chamizo S, Cantón Y, Miralles I, et al. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems[J]. Soil Biology and Biochemistry, 2012, 49: 96 − 105. doi: 10.1016/j.soilbio.2012.02.017 [6] 李宁宁, 张光辉, 王 浩, 等. 黄土丘陵沟壑区生物结皮对土壤抗蚀性能的影响[J]. 中国水土保持科学, 2020, 18(1): 42 − 48. doi: 10.16843/j.sswc.2020.01.006 [7] 程 才, 李玉杰, 龙明忠, 等. 苔藓结皮在我国喀斯特石漠化治理中的应用潜力[J]. 应用生态学报, 2019, 30(7): 2501 − 2510. doi: 10.13287/j.1001-9332.201907.008 [8] Zhang Y D, Gao M, Yu C Y, et al. Soil nutrients, enzyme activities, and microbial communities differ among biocrust types and soil layers in a degraded karst ecosystem[J]. Catena, 2022, 212: 106057. doi: 10.1016/j.catena.2022.106057 [9] Hu P, Zhang W, Xiao L M, et al. Moss-dominated biological soil crusts modulate soil nitrogen following vegetation restoration in a subtropical karst region[J]. Geoderma, 2019, 352: 70 − 79. doi: 10.1016/j.geoderma.2019.05.047 [10] 杨航宇, 刘艳梅, 王廷璞. 荒漠区生物土壤结皮对土壤酶活性的影响[J]. 土壤学报, 2015, 52(3): 654 − 664. doi: 10.11766/trxb201405290256 [11] 万红云, 陈 林, 庞丹波, 等. 贺兰山不同海拔土壤酶活性及其化学计量特征[J]. 应用生态学报, 2021, 32(9): 3045 − 3052. doi: 10.13287/j.1001-9332.202109.021 [12] 郭 澍, 许佳扬, 魏晓梦, 等. 原位酶谱技术在土壤酶活性研究中的应用进展[J]. 生态学报, 2022, 42(3): 862 − 871. [13] 樊 瑾, 李诗瑶, 余海龙, 等. 毛乌素沙地不同类型生物结皮与下层土壤酶活性及土壤碳氮磷化学计量特征[J]. 中国沙漠, 2021, 41(4): 109 − 120. [14] Bao T L, Zhao Y G, Yang X Q, et al. Effects of disturbance on soil microbial abundance in biological soil crusts on the Loess Plateau, China[J]. Journal of Arid Environments, 2019, 163: 59 − 67. doi: 10.1016/j.jaridenv.2019.01.003 [15] 姚宏佳, 王宝荣, 安韶山, 等. 黄土高原生物结皮形成过程中土壤胞外酶活性及其化学计量变化特征[J]. 干旱区研究, 2022, 39(02): 456 − 468. doi: 10.13866/j.azr.2022.02.13 [16] Zhao L N, Liu Y B, Wang Z R, et al. Bacteria and fungi differentially contribute to carbon and nitrogen cycles during biological soil crust succession in arid ecosystems[J]. Plant and Soil, 2020, 447(1 − 2): 1 − 14. [17] 张冠华, 易 亮, 孙宝洋, 等. 亚热带苔藓结皮对土壤-微生物-胞外酶化学计量特征的影响[J]. 应用生态学报, 2022, 33(7): 1791 − 1800. [18] 熊康宁, 黎 平, 周忠发. 喀斯特石漠化的遥感-GIS典型研究[M]. 北京: 地质出版社, 2002. [19] Drahorad S, Felix H P, Siemens J, et al. Patterns of enzyme activities and nutrient availability within biocrusts under increasing aridity in Negev desert[J]. Ecosphere, 2022, 13(5): 4051. [20] Li Y G, Zhou X B, Zhang Y M. Moss patch size and microhabitats influence stoichiometry of moss crusts in a temperate desert, Central Asia[J]. Plant and Soil, 2019, 443(1): 55 − 72. [21] Cheng C, Gao M, Zhang Y D, et al. Effects of disturbance to moss biocrusts on soil nutrients, enzyme activities, and microbial communities in degraded karst landscapes in southwest China[J]. Soil Biology and Biochemistry, 2021, 152: 108065. doi: 10.1016/j.soilbio.2020.108065 [22] 孟 杰, 卜崇峰, 赵玉娇, 等. 陕北水蚀风蚀交错区生物结皮对土壤酶活性及养分含量的影响[J]. 自然资源学报, 2010, 25(11): 1864 − 1874. doi: 10.11849/zrzyxb.2010.11.006 [23] Liu Y M, Yang H Y, Li X R, et al. Effects of biological soil crusts on soil enzyme activities in revegetated areas of the Tengger Desert, China[J]. Applied Soil Ecology, 2014, 80: 6 − 14. doi: 10.1016/j.apsoil.2014.03.015 [24] Xiao B, Veste M. Moss-dominated biocrusts increase soil microbial abundance and community diversity and improve soil fertility in semi-arid climates on the Loess Plateau of China[J]. Applied Soil Ecology, 2017, 117: 165 − 177. [25] 吴丽芳, 王紫泉, 王 妍, 等. 喀斯特高原不同石漠化程度土壤C、N、P化学计量特征和酶活性的关系[J]. 生态环境学报, 2019, 28(12): 2332 − 2340. doi: 10.16258/j.cnki.1674-5906.2019.12.004 [26] 高丽倩, 赵允格, 许明祥, 等. 生物土壤结皮演替对土壤生态化学计量特征的影响[J]. 生态学报, 2018, 38(2): 678 − 688. [27] 王霖娇, 汪 攀, 盛茂银. 西南喀斯特典型石漠化生态系统土壤养分生态化学计量特征及其影响因素[J]. 生态学报, 2018, 38(18): 6580 − 6593. [28] 关松荫. 土壤酶及其研究方法[M]. 北京: 中国农业科技出版社, 1986. [29] Cheng C, Li Y J, Long M Z, Li X N. Moss biocrusts buffer the negative effects of karst rocky desertification on soil properties and soil microbial richness[J]. Plant and Soil, 2020: https://doi/10.1007/s11104-020-04602-4. [30] Liu Y B, Wang Z R, Zhao L N, et al. Differences in bacterial community structure between three types of biological soil crusts and soil below crusts from the Gurbantunggut Desert, China[J]. European Journal of Soil Science, 2019, 70(3): 630 − 643. doi: 10.1111/ejss.12765 [31] Kakeh J, Gorji M, Sohrabi M, et al. Effects of biological soil crusts on some physicochemical characteristics of rangeland soils of Alagol, Turkmen Sahra, NE Iran[J]. Soil and Tillage Research, 2018, 181: 152 − 159. doi: 10.1016/j.still.2018.04.007 [32] Bao T L, Zhao Y G, Gao L Q, et al. Moss-dominated biocrusts improve the structural diversity of underlying soil microbial communities by increasing soil stability and fertility in the Loess Plateau region of China[J]. European Journal of Soil Biology, 2019, 95: 103120. doi: 10.1016/j.ejsobi.2019.103120 [33] Zhang B C, Zhou X B, Zhang Y M. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang[J]. Journal of Arid Land, 2015, 7(1): 101 − 109. doi: 10.1007/s40333-014-0035-3 [34] Zhao H L, Guo Y R, Zhou R L, et al. Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land, China[J]. Catena, 2010, 82(2): 70 − 76. doi: 10.1016/j.catena.2010.05.002 [35] Caballero R E, Stanelle T, Egerer S, et al. Global cycling and climate effects of aeolian dust controlled by biological soil crusts[J]. Nature Geoscience, 2022, 15: 458 − 463. doi: 10.1038/s41561-022-00942-1 [36] Belnap J. Biological soil crusts: structure, function, and management[M]. Berlin: Springer, 2001. [37] 马伟伟, 王丽霞, 李 娜, 等. 不同水氮水平对川西亚高山林地土壤酶活性的影响[J]. 生态学报, 2019, 39(19): 7218 − 7228. [38] 程 才. 喀斯特石漠化地区苔藓结皮覆被土壤呼吸特征研究[D]. 贵阳, 贵州师范大学, 2021. [39] Zhang W, Zhang G S, Liu G X, et al. Bacterial diversity and distribution in the southeast edge of the Tengger Desert and their correlation with soil enzyme activities[J]. Jurnal of Environmental Sciences, 2012, 24(11): 2004 − 11. [40] Brockett B, Prescott C E, Grayston S J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology and Biochemistry, 2012, 44(1): 9 − 20. doi: 10.1016/j.soilbio.2011.09.003 [41] 王彦峰, 肖 波, 王 兵, 等. 黄土高原水蚀风蚀交错区藓结皮对土壤酶活性的影响[J]. 应用生态学报, 2017, 28(11): 3553 − 3561. doi: 10.13287/j.1001-9332.201711.002 [42] 王玉功, 刘婧晶, 刘贻熙, 等. 苯酚-次氯酸钠比色法测定土壤脲酶活性影响因素的研究[J]. 土壤通报, 2019, 50(5): 1166 − 1170. doi: 10.19336/j.cnki.trtb.2019.05.22 [43] Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions[J]. Ecological applications, 2010, 20(1): 5 − 15. doi: 10.1890/08-0127.1 [44] Ferrenberg S, Tucker C L, Reed S C. Biological soil crusts: diminutive communities of potential global importance[J]. Frontiers in Ecology and the Environment, 2017, 15(3): 160 − 167. doi: 10.1002/fee.1469 [45] Ghiloufi W, Seo J, Kim J, et al. Effects of biological soil crusts on enzyme activities and microbial community in soils of an arid ecosystem[J]. Microbial Ecology, 2019, 77(1): 201 − 216. doi: 10.1007/s00248-018-1219-8 [46] Ullah M R, Carrillo Y, Dijkstra F A. Drought-induced and seasonal variation in carbon use efficiency is associated with fungi: bacteria ratio and enzyme production in a grassland ecosystem[J]. Soil Biology and Biochemistry, 2021, 155: 108159. doi: 10.1016/j.soilbio.2021.108159 -