Soil Salinization Characteristics in Different Land Use Soils
-
摘要:
目的 以3种利用方式(城市绿地、平原造林地、苗圃地)土地的土壤为研究对象,揭示土地利用方式对土壤盐碱化特征的影响,以期为合理选择造林和营林类型并有效地从成因上控制土壤盐碱化趋势以及土地利用的可持续发展提供科学依据。 方法 2022年春季在北京市通州区选取树种常见的城市绿地、平原造林地、苗圃地54个,分别采集0 ~ 20 cm、20 ~ 40 cm土层土壤样品324个,对各土层土壤全盐含量、主要阴阳离子含量及组成、碱化指标进行测定,采用单因素方差分析、相关性分析、克里金插值法对3种利用方式土地的土壤盐碱特征进行分析,并探讨其形成原因。 结果 研究区土壤总体呈碱性,土壤pH在8.39 ~ 8.53之间,盐化和碱化程度均为中度及以下。不同利用方式土地的土壤全盐含量、离子组成及分布存在差异,城市绿地土壤盐分呈“表聚”型分布,全盐量及Cl−、Na + 、Mg2 + 含量显著高于平原造林地和苗圃地,研究区土壤Na + 变异系数最大,Ca2 + 变异系数最小。除Na + 外,其它离子在城市绿地土壤中变异系数均高于平原造林地和苗圃地。在空间分布特征上,0 ~ 20 cm层土壤全盐量与碱化度的状况基本一致,研究区北部盐碱化程度较高,且由北向南逐渐递减。 结论 研究区3种利用方式土地形成不同的土壤盐碱化特征。城市绿地土壤较易发生次生盐碱化,而平原造林地和苗圃地的管理措施及枯落物返还比例可能通过改变土壤盐分含量、组成及碱化程度,从而减缓次生盐碱化。 Abstract:Objective The effects of three land use patterns (urban green space, plain afforestation and plant nursery) on soil salinization were studied, so as to provide a scientific basis for rational selection of afforestation and afforestation types, effective genetic control of soil salinization and sustainable development of land use. Methods In the spring of 2022, 54 urban green space, plain afforestation and plant nursery with common tree species were selected in Tongzhou District of Beijing, and 324 soil samples were collected from 0 ~ 20 cm and 20 ~ 40 cm soil layers, respectively. The total salt content, major anion content and composition, and alkalization index of soil in each soil layer were determined. The single factor analysis of variance, correlation analysis and Kriging interpolation method were used to analyze the soil saline-alkali characteristics under different land use patterns, and to explore the reasons for their formation. Results The soil in the study area is generally alkaline, with a pH range of 8.39 ~ 8.53, suggesting a moderate or lower degree of salinization and alkalization. Different land use types resulted in changes in soil total salt content, ion composition, and distribution. The soil salt distribution in urban green space is "surface aggregation" and the overall salt content, Cl−, Na +, Mg2 + concentrations were much higher than that of plain afforestation and nursery. In the study area, the fluctuation coefficient of soil Na + was the highest, while that of Ca2 + was the lowest. Except for Na + , the fluctuation coefficients of all ions in urban green space soil were higher than these in afforestation and nursery soil. The spatial distribution of soil total salt content and salinization degree in the 0 ~ 20 cm layer was largely consistent in terms of spatial distribution characteristics. The salinization degree was relatively high in the northern section of the research area and gradually declines from north to south. Conclusion Land use types in the study area leaded to variation of soil salinization characteristics. Urban green soil was prone to secondary salinization, while afforestation and nursery management measures and litter return ratio in plain soil may reduce secondary salinization by changing soil salt content, composition and alkalinity degree. -
Key words:
- Land use type /
- Urban green space /
- Salinity characteristics /
- Spatial distribution
-
表 1 土壤盐碱含量统计值
Table 1. Statistical values of soil salinity content
土地类型
Soil type土层深度
Soil layer
(cm)pH 交换性钠离子
Exchangeable Na +
(cmol kg–1)碱化度
ESP
(%)全盐含量
Salt content最大值
Maximum
(g kg–1)最小值
Minimum
(g kg–1)平均值
Average
(g kg–1)标准差
Standard deviation
(g kg–1)变异系数
Coefficient of variation
(%)城市绿地 0 ~ 20 8.49 2.52 12.56 2.1 1.33 1.64 0.24 14.70 20 ~ 40 8.39 2.06 10.17 2.54 0.79 1.25 0.48 38.09 平原造林地 0 ~ 20 8.51 1.67 11.83 1.65 0.83 1.22 0.25 20.49 20 ~ 40 8.53 1.69 11.78 1.63 0.63 1.22 0.25 20.13 苗圃地 0 ~ 20 8.48 1.92 11.40 1.94 0.75 1.21 0.28 23.47 20 ~ 40 8.50 2.29 12.80 1.88 0.84 1.33 0.24 18.26 表 2 土壤盐碱指标间的相关性
Table 2. Correlation analysis of soil salinity indicators
HCO3− Cl− SO42− Ca2 + Mg2 + Na + K + 全盐
Total salt content碱化度
ESPHCO3− 1 Cl− −0.400** 1 SO42− −0.346** 0.495** 1 Ca2 + −0.584** 0.730** 0.628** 1 Mg2 + −0.362** 0.549** 0.532** 0.676** 1 Na + −0.228* 0.468** 0.242* 0.418** 0.622** 1 K + 0.222* −0.259** −0.161 −0.176 −0.385** −0.700** 1 全盐 −0.116 0.731** 0.650** 0.610** 0.697** 0.809** −0.516** 1 碱化度 0.368** −0.005 −0.077 −0.120 0.142 0.501** −0.262** 0.386** 1 注:*相关性在0.05水平下显著;**相关性在0.01水平下显著 表 3 盐化、碱化、盐渍土盐分组成类型面积占比
Table 3. Soil areal proportions of different salinization levels, alkalization levels, and salt composition types of saline soil (%)
盐化程度
Salinization
level城市绿地
Urban
green
space平原造林地
Plain
afforestation苗圃地
Nursery碱化程度
Alkalization
level城市绿地
Urban
green
space平原造林地
Plain
afforestation苗圃地
Nursery盐渍土盐分组成类型
Salt
composition type城市绿地
Urban
green
space平原造林地
Plain
afforestation苗圃地
Nursery非盐渍土 15 18 18 非碱化土 5 0 0 苏打盐渍土 30 26 42 轻度盐渍土 75 82 82 轻度碱化土 20 11 20 氯化物盐渍土 0 0 0 中度盐渍土 10 0 0 中度碱化土 75 89 78 硫酸盐-氯化物盐渍土 40 37 26 重度盐渍土 0 0 0 重度碱化土 0 0 2 氯化物-硫酸盐盐渍土土 30 37 32 盐土 0 0 0 碱土 0 0 0 硫酸盐盐渍土 0 0 0 -
[1] 高惠敏, 王相平, 屈忠义, 等. 不同改良剂对河套灌区土壤盐碱指标及作物产量的影响研究[J]. 土壤通报, 2020, 51(5): 1172 − 1179. doi: 10.19336/j.cnki.trtb.2020.05.22 [2] 刘洪波, 丁邦新, 白云岗, 等. 典型干旱区绿洲春季土壤盐分空间分布特征分析[J]. 土壤通报, 2021, 52(2): 279 − 285. doi: 10.19336/j.cnki.trtb.2020040201 [3] 于 建, 宋以玲, 丁方军, 等. 复合微生物肥料对盐胁迫下番茄生理特性的影响[J]. 土壤通报, 2020, 51(2): 372 − 380. doi: 10.19336/j.cnki.trtb.2020.02.15 [4] 路嘉丽, 沈 光, 王 琼, 等. 落叶松、水曲柳、樟子松和农田土壤指标差异及其综合比较[J]. 生态学报, 2017, 37(10): 3543 − 3552. [5] 李 珊, 杨越超, 姚媛媛, 等. 不同土地利用方式对山东滨海盐碱土理化性质的影响[J]. 土壤学报, 2022, 59(4): 1012 − 1024. [6] Gunarathne V, Senadeera A, Gunarathne U, et al. Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil[J]. Biochar, 2020, 2(1): 107 − 120. doi: 10.1007/s42773-020-00036-4 [7] 樊丽琴, 李 磊, 吴 霞, 等. 不同培肥措施对银北灌区土壤盐碱特性、玉米生长及产量指标的影响[J]. 中国土壤与肥料, 2021, (6): 120 − 128. doi: 10.11838/sfsc.1673-6257.20463 [8] Zhang Z, Feng S, Luo J, et al. Evaluation of microbial assemblages in various saline-alkaline soils driven by soluble salt ion components[J]. Journal of Agricultural and Food Chemistry, 2021, 69(11): 3390 − 3400. doi: 10.1021/acs.jafc.1c00210 [9] 郭永龙, 刘友兆, 王利环. 华北山区不同海拔台地不同土地利用方式下土壤肥力及脱盐趋势[J]. 水土保持学报, 2012, 26(6): 131 − 134. doi: 10.13870/j.cnki.stbcxb.2012.06.037 [10] Lu T, Wang X, Xu M, et al. Dynamics of pedogenic carbonate in the cropland of the North China Plain: Influences of intensive cropping and salinization[J]. Agriculture, Ecosystems & Environment, 2020, 292: 106820. [11] 景宇鹏, 李跃进, 高 娃, 等. 不同利用方式河套平原盐碱土盐分特征[J]. 水土保持研究, 2020, 27(1): 372 − 379. doi: 10.13869/j.cnki.rswc.2020.01.052 [12] 王雪梅, 康 璇, 赵 枫. 不同土地利用方式下渭-库绿洲土壤盐渍化特征分析[J]. 水土保持研究, 2016, 23(1): 160 − 164. doi: 10.13869/j.cnki.rswc.2016.01.023 [13] 张骏达. 北京市城区绿地土壤理化性质及细菌群落结构研究[D]. 北京林业大学, 2019. [14] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐渍土[M]. 北京: 科学出版社, 1993. [15] 贾 娇, 何 萍, 徐 杰, 等. 天津中东部平原区土壤盐分空间分布特征[J]. 环境工程技术学报, 2021, 11(4): 711 − 719. [16] 朱昌达, 高明秀, 王文倩, 等. 基于GIS的滨海盐渍化农田土壤空间变异及其分区管理[J]. 生态学报, 2020, 40(19): 6982 − 6990. [17] 景宇鹏, 连海飞, 李跃进, 等. 河套盐碱地不同利用方式土壤盐碱化特征差异分析[J]. 水土保持学报, 2020, 34(4): 354 − 363. doi: 10.13870/j.cnki.stbcxb.2020.04.051 [18] 张若菎. 北京通州区域绿色空间的风景特征评估研究[D]. 北京林业大学, 2018. [19] 孔祥斌. 华北集约化农区土地利用变化及其可持续评价[D]. 中国农业大学, 2003. [20] Xiao R, Tian Y, Xu G. Spatial gradient of urban green field influenced by soil sealing[J]. Science of The Total Environment, 2020, 735: 139490. doi: 10.1016/j.scitotenv.2020.139490 [21] Mónok D, Kardos L, Pabar S A, et al. Comparison of soil properties in urban and non-urban grasslands in Budapest area[J]. Soil Use and Management, 2021, 37(4): 790 − 801. doi: 10.1111/sum.12632 [22] Nero B F, Anning A K. Variations in soil characteristics among urban green spaces in Kumasi, Ghana[J]. Environmental Earth Sciences, 2018, 77(8): 1 − 12. [23] 谢军飞, 丛日晨, 王月容, 等. 北京通州地表温度的时空分布特征与绿化作用[J]. 中国园林, 2021, 37(4): 41 − 45. doi: 10.19775/j.cla.2021.04.0041 [24] Eswar D, Karuppusamy R, Chellamuthu S. Drivers of soil salinity and their correlation with climate change[J]. Current Opinion in Environmental Sustainability, 2021, 50: 310 − 318. doi: 10.1016/j.cosust.2020.10.015 [25] Ortiz A C, Jin L. Chemical, and hydrological controls on salt accumulation in irrigated soils of southwestern US[J]. Geoderma, 2021, 391: 114976. doi: 10.1016/j.geoderma.2021.114976 [26] Silver W L, Hall S J, González G. Differential effects of canopy trimming and litter deposition on litterfall and nutrient dynamics in a wet subtropical forest[J]. Forest Ecology & Management, 2014, 332: 47 − 55. [27] 胡文杰, 庞宏东, 胡兴宜, 等. 竹林密度和施肥种类对幕阜山区毛竹笋产量和品质及土壤理化性质的影响[J]. 林业科学, 2021, 57(12): 32 − 42. [28] 王 莹, 王西涵, 刘 云, 等. 平原造林工程影响下的河岸带土壤生态化学计量特征[J]. 水土保持学报, 2022, 36(3): 188 − 194. [29] 崔成乘, 查同刚, 张晓霞, 等. 北京通州平原生态林空间结构特征[J]. 应用生态学报, 2022, 33(8): 2088 − 2096. [30] Liu B, Wang S, Liu X, et al. Evaluating soil water and salt transport in response to varied rainfall events and hydrological years under brackish water irrigation in the North China Plain[J]. Geoderma, 2022, 422: 115954. doi: 10.1016/j.geoderma.2022.115954 [31] 高铭骏, 汪 旭, 孟玲珑, 等. 沿海发展区海水入侵与土壤盐渍化空间关联解析[J]. 环境化学, 2022, 41(3): 987 − 1000. [32] Zhu L, Jia X, Li M, et al. Associative effectiveness of bio-organic fertilizer and soil conditioners derived from the fermentation of food waste applied to greenhouse saline soil in Shan Dong Province, China[J]. Applied Soil Ecology, 2021, 167: 104006. doi: 10.1016/j.apsoil.2021.104006 [33] Li J, Sun X, Li S. Effects of Garden Waste Compost and Bentonite on Muddy Coastal Saline Soil[J]. Sustainability, 2020, 12(9): 3602. doi: 10.3390/su12093602 [34] 赵惠丽, 于金艺, 刘涛, 等. 秸秆与脱硫石膏配施改良黄河三角洲盐碱地的理化性质[J]. 环境科学, 44(7): 4119-4129. [35] Equiza M A, Calvo-Polanco M, Cirelli D, et al. Long-term impact of road salt (NaCl) on soil and urban trees in Edmonton, Canada[J]. Urban Forestry & Urban Greening, 2017, 21: 16 − 28. [36] Wakeel A. Potassium-sodium interactions in soil and plant under saline-sodic conditions[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(3): 344 − 354. doi: 10.1002/jpln.201200417 [37] Jalali M, Arian T M, Ranjbar F. Selectivity coefficients of K, Na, Ca, and Mg in binary exchange systems in some calcareous soils[J]. Environmental Monitoring and Assessment, 2020, 192(2): 1 − 14. [38] 金丽华, 郑雅莲, 张世文. 通州土壤资源及其高效利用[M]. 北京: 中国农业科学技术出版社, 2014. [39] 康满萍, 赵成章, 李群. 苏干湖湿地土壤全盐含量特征及其与地下水的关联分析[J]. 生态学报, 42(22): 9026-9034. [40] Mashal K, Al-Qinna M, Salahat M, et al. Spatial variations of urban soil salinity and related ions in arid and semiarid areas[J]. Arabian Journal of Geosciences, 2022, 15(14): 1 − 16. [41] Wang M, Zhu Y, Zhao T, et al. Chemical characteristics of salt migration in frozen soils during the freezing-thawing period[J]. Journal of Hydrology, 2022, 606: 127403. doi: 10.1016/j.jhydrol.2021.127403 -