不同热解温度制备的烟秆生物炭理化特征分析

徐 亮1,于晓娜1,李雪利2,王悦霖1,宋佳倩1,叶协锋1,卢 剑3*

(1.河南农业大学烟草学院,国家烟草栽培生理生化研究基地,烟草行业烟草栽培重点实验室,河南郑州450002;2.中国烟草总公司职工进修学院,河南郑州450008; 3.四川省烟草公司凉山州公司西昌分公司,四川 西昌615000)

摘 要:分别对 100~800 ℃ 下于马弗炉中低氧炭化制备的烟秆生物炭进行研究,分析其基础理化性质的变化。结果表明,烟草秸秆生物炭微量元素含量在热解温度为 100~400 ℃ 时呈逐渐上升的趋势,在 400~500 ℃ 时较为稳定;大量 元素含量增加;C含量和 N 元素含量在 100~300 ℃ 时逐渐增加,在 400~800 ℃ 时先增加后下降,C/N 在 300~500 ℃ 时较为稳定。随着热解温度的升高,烟草秸秆生物炭表面水分子、甲基和亚甲基等官能团减少,C=C含量逐渐增多;烟草秸秆生物炭的 BET 比表面积、孔径、比孔容均在 400~500 ℃ 时较大。烟草秸秆生物炭的中孔较多,孔隙内部特征 多为墨水瓶状孔。热解温度为 400~500 ℃ 时,烟杆生物炭大量和微量元素含量相对较高,C/N 较为稳定,孔隙结构最 为复杂。

关 键 词:烟秆;生物炭;热解温度;物理特征;化学特性 **中图分类号:**X53 **文献标识码:**A **文章编号:**0564-3945(2021)01-0075-07

DOI: 10.19336/j.cnki.trtb.2020050701

徐 亮, 于晓娜, 李雪利, 王悦霖, 宋佳倩, 叶协锋, 卢 剑. 不同热解温度制备的烟秆生物炭理化特征分析 [J]. 土壤通报, 2021, 52(1): 75-81

XU Liang, YU Xiao-na, LI Xue-li, WANG Yue-lin, SONG Jia-qian, YE Xie-feng, LU Jian. Physico-chemical Characteristics of Biochars Prepared by Pyrolysis of Tobacco-stalk under Different Temperatures[J]. Chinese Journal of Soil Science, 2021, 52(1):75 – 81

我国每年会产生大量的废弃秸秆,而对产生的 秸秆进行焚烧处理^[1],既造成生物质资源的严重浪费 又导致了环境污染,同时还是造成烟田土壤病虫害发 生的主要诱因之一^[2-3]。为了寻找最佳的秸秆处理方 法,国外学者主要通过将烟草秸秆制备成烟草乙醇、 生物质燃料、纸浆等方面开展研究^[4-6],国内一些科 研技术工作者主要研究如何从烟草秸秆中提取生物 质烟碱、如何将烟草秸秆制备成生物质燃料和有机 肥等^[7-9],但是关于将烟草秸秆为主要原料生产生物 质活性炭并将其广泛应用在烟田土壤保育及固碳资 源减排领域等方面的相关技术研究鲜见媒体报道。 因此,本文通过将烟草秸秆制备成生物炭的方式进 行烟草秸秆的处理,并对烟草秸秆生物炭的理化性 质进行研究。

生物炭主要是在特定条件下,对其他生物质原料 进行加工得到的。其主要特点是碳含量相对较高、 稳定^[10-12],含有大量的C、H、O、N等元素^[13-14], 有羧酸酯化、芳香化和链状的分子结构^[15-18],富含羧 基、酚羟基、羟基、脂族双键^[19]并具有丰富的孔隙 结构^[20]。由于生物炭丰富的孔隙结构和元素含量,其 在对土壤改良、土壤微生态的调控、提高了农作物 种植产量等科学技术方面的应用受到了科研技术工 作者极大的关注^[21-22],而对于生物炭在制备过程中理 化性状的变化关注较少。

到目前为止,人们已经对烤烟秸秆炭化后原材 料的产率、生成生物碳的阳离子交换量和 pH 等指标 进行了较多研究^[23-24]。但是前人研究中,热解温度大 多集中于 300~600 ℃,并且较少涉及烟草秸秆生物 炭的孔隙结构和表面官能团等指标的测定。本文将 对不同热解温度下(100~800 ℃)制备的各种烟草 秸秆的生物炭理化性质进行了对比和分析,为烟草 秸秆生物炭的广泛应用和发展提供更加全面的科学 理论和技术参考。

收稿日期: 2020-05-07; 修订日期: 2020-08-11

基金项目: 烟草行业烟草栽培重点实验室资助项目(30800665)、河南省烟草公司资助项目(HYKJ201301)和重庆市烟草公司资助项目 (NY20140401070010)资助

作者简介: 徐 亮(1992-), 男,河南郑州人,硕士研究生,主要研究方向为烟草栽培生理生化。E-mail: 273868659@qq.com ***通讯作者:** E-mail: lujian617952@126.com

1 材料与方法

1.1 试验材料与生物炭的制备

烟草秸秆生物炭用限氧裂解法^[15] 制备。烟草秸 秆于 2013 年在平顶山郏县收集,烟草品种为中烟 100。将烟草秸秆风干,放入马弗炉内,以 20 ℃ min⁻¹ 速度分别升温至 100 ℃、200 ℃、300 ℃、400 ℃、 500 ℃、600 ℃、700 ℃ 和 800 ℃,并在该温度下炭 化 2 h。取出后,冷却,粉碎后过 20 目筛,作为烟 草秸秆生物炭样本进行理化性质分析。

1.2 分析方法

制备的生物炭中矿质元素含量采用 VISTA-MPX 光谱仪测定; C、N 元素含量用元素分析仪(vario MACRO cube,德国)测定;官能团红外分析仪 (AVATAR 360 FT-IR SEP,美国)测定;比表面积 和孔径分布采用全自动比表面积及微孔分析仪

(Quadrasorb Si Four Station Surface Area Analyzer and Pore Size Analyzer, 美国)测定。

2 结果与分析

2.1 不同热解温度对烟草秸秆生物炭矿质元素含量的影响

由表 1、表 2 可知, 热解温度对制备烟草秸杆生物炭的大量、中量和微量矿质元素含量影响显著; 大量元素 P、K 和中量元素 Ca、Mg 的含量在 100~ 400 ℃ 时缓慢增加。热解温度为 400 ℃ 时制备的烟 杆生物炭中 P、K、Ca、Mg 四种矿质元素的含量变 化极为显著,与热解温度为 300 ℃ 时相比,其含量 分别升高了 89.15%、109.30%、128.93% 和 93.91%。 由表 2 可知, Mn、Zn 两种矿质元素的含量也有相 同的变化规律;与 300 ℃ 时制备的烟杆生物炭相 比,热解温度为 400 ℃ 时, Mn、Zn 的含量分别提 高了 91.49%、65.45%。在 600~800 ℃ 时, B 的含量 较高。

2.2 不同热解温度对烟秆生物炭 C、N 含量以及表面 官能团的影响

由表 3 可知,随着热解温度的升高,C、N含量 呈现出先升高后降低的趋势。热解温度为 100~300 ℃ 时制备的烟杆生物炭中C、N含量均在逐渐升高;C、 N含量在热解温度为 400~600 ℃ 时急剧减少,与 300 ℃ 时相比,400 ℃ 时的C、N含量分别降低了 41.55% 和 41.58%;700~800 ℃ 时,C、N元素含量 继续降低。不同热解温度下制备的烟杆生物炭中 C/N 比值逐渐降低,但在热解温度为 300~500 ℃ 时 基本保持不变。

表1 烟秆生物炭大量和中量矿质元素随热解温度的变化

Table 1 Mineral macro-elements and middle-elements of tobacco-stalk biochar under different pyrolysis temperatures

抽細泪座(∞)	磷	钾	钙	镁
恐胜温度(し) Tommoroture	Phosphorus	Potassium	Calcium	Magnesium
remperature	$(mg g^{-1})$	$(mg g^{-1})$	$(mg g^{-1})$	$(mg g^{-1})$
100	1.123 d	10.44 cd	14.05 e	1.50 d
200	2.786 d	26.54 d	26.56 de	3.11 d
300	4.941 c	54.11 c	42.45 d	5.09 c
400	9.346 b	113.25 b	97.18 b	9.87 b
500	10.707 b	116.68 b	97.18 b	12.27 b
600	10.178 b	140.23 a	104.84 b	10.57 b
700	7.715 bc	112.58 b	80.19 c	7.43 c
800	18.209 a	115.86 b	202.43 a	22.01 a

注:每组同列的不同字母表示0.05显著水平。下同。

表 2 烟秆生物炭微量矿质元素随热解温度的变化

 Table 2
 Mineral micro-elements of tobacco-stalk biochar under different pyrolysis temperatures

劫 舠泪亩(∞)	硼	铁	锰	锌
恐 開 温 度 し し) T 	Boron	Iron	Manganese	Zinc
Temperature	$(mg g^{-1})$	$(mg g^{-1})$	$(mg g^{-1})$	$(mg g^{-1})$
100	0.013 cd	0.125 de	0.008 d	0.016 d
200	0.015 cd	0.361 d	0.026 c	0.030 cd
300	0.019 c	0.285 d	0.047 b	0.055 c
400	0.010 d	0.821 bc	0.090 a	0.091 b
500	0.011 d	1.152 b	0.090 a	0.090 b
600	0.067 a	0.946 b	0.095 a	0.094 b
700	0.040 b	0.811 bc	0.065 b	0.064 c
800	0.020 c	1.862 a	0.236 c	0.140 b

表 3 烟秆生物炭 C、N 元素含量随热解温度的变化

 Table 3
 Contents of carbon (C) and nitrogen (N) in tobacco-stalk biochar under different pyrolysis temperatures

热解温度(℃) Temperature	碳(%) C	氮(%) N	C/N
100	36.89 ab	2.40 b	15.36 a
200	41.00 a	3.56 a	11.50 b
300	41.01 a	3.80 a	10.80 b
400	23.97 b	2.22 b	10.77 b
500	15.22 c	1.43 c	10.64 b
600	7.55 d	0.84 d	9.01 bc
700	6.64 d	0.79 d	8.43 bc
800	3.49 e	0.71 d	4.95 d

由图 1 可知,不同温度制备的烟草秸秆生物炭的 表面官能团种类和数量差异较大。波数 3418.521 cm⁻¹ 处是由羟基振动产生的谱峰^[25],其在热解温度为 100~ 300 ℃ 时对红外射线的吸收强度最强,说明此时烟 杆生物炭中的羟基基团含量较多,到 400 ℃ 开始 明显减弱,说明此时羟基开始降解并逐渐减少。

图 1 烟草秸秆生物炭的红外吸收光谱 Fig.1 Infrared absorption spectra of tobacco-stalk biochar under different pyrolysis temperatures

2925.110 cm⁻¹ 处是由甲基和亚甲基产生的吸收谱 峰^[26],其在热解温度为 100 ℃和 200 ℃ 时有吸收谱 峰,300 ℃ 时吸收谱峰逐渐消失,说明随着热解温 度的升高,烟草秸秆生物炭中甲基和亚甲基正在逐 渐降解减少。1624.335 cm⁻¹ 处是由水分子和羧酸根 振动产生的吸收谱峰^[27],其在热解温度为 100~300 ℃ 时有比较明显的吸收谱峰,400~800 ℃ 时谱峰消失, 说明随着热解温度的升高,烟草秸秆生物炭中水分 子消失和羧酸根发生降解转化,烟杆生物炭的缩合 程度上升并逐渐形成芳香结构。1445.087 cm⁻¹ 处为 木质素中芳香性 C=C 振动产生的谱峰^[28],其在 100~300 ℃ 时没有明显的吸收谱峰,400~800 ℃ 时有较明显的吸收谱峰,说明此时烟杆生物炭中芳 香性 C=C 含量较多。1300.000 ~ 300.000 cm⁻¹ 处的 吸收谱峰是由二氧化硅的振动产生的,其在热解温 度为 100 ~ 300 ℃ 时没有明显的吸收谱峰,在热解温 度为 400 ~ 800 ℃ 时出现明显的吸收谱峰,说明此时 烟杆生物炭中主要含有二氧化硅。

综上所述,在热解温度为 100 ℃ 时制备的烟草 秸秆生物炭主要以纤维素和木质素等为主。在热解 温度为 200 ℃ 时制备的烟草秸秆生物炭中,纤维素 初步分解为酸和羧酸盐。在热解温度为 300 ~ 500 ℃ 时制备的烟草秸秆生物炭的主要成分为腐殖酸盐以 及残留的多糖等。在热解温度为 600 ℃ 时制备的烟 草秸秆生物炭中含有腐殖酸盐和少量的二氧化硅、 碳酸钙。在热解温度为 700~800 ℃ 时制备的烟草秸 秆生物炭中含有碳酸钙、硫酸钾和二氧化硅^[28]。

2.3 不同热解温度对烟秆生物炭孔隙状况的影响

利用美国 Quantachrome Instruments 全自动比表 面积、孔隙和化学吸附仪测得样品的氮气吸附—脱 附等温线如图 2 所示。由 Kelvin 公式可知,在温度 为 77.4 K 下,氮气在生物炭表面的吸附量与氮气的 相对压力 (P/P_0) 有关,其中 P 为氮气的分压, P_0 为液 氮温度下氮气的饱和蒸气压;当 P/P_0 在 0.05~0.35 时,

Fig.2 Adsorption isotherms of tobacco-stalk biochar under different pyrolysis temperatures

吸附量与相对压力的关系符合 BET 比表面积方程。

当相对压力(P/P_0)为1时,不同热解温度 (100~800 °C)下制备的烟草秸秆生物炭的氮气吸 附量随着热解温度的升高先增后降,并且在热解温 度为400 °C 时氮气吸附量达到最大值,说明在热解 温度为100~400 °C 时,烟杆生物炭的氮气吸附量逐 渐变大;在400~800 °C 时,氮气吸附量逐渐减小。

由图 2 可知,氮气吸附曲线在相对压力(P/P_0) 较低($0 \sim 0.8$)时上升比较平缓,说明在不同热解温 下制备的烟草秸秆生物炭中含有一定量的微孔;在 相对压力(P/P_0)较高($0.8 \sim 1.0$)时曲线斜率较大, 说明其含有一定量的大孔和中孔^[29]。

图 2 中的 a1 和 a2 分别是热解温度为 100 ~ 200 ℃、300 ~ 400 ℃、500 ~ 600 ℃ 和 700 ~ 800 ℃ 时吸附曲线(Ads)和脱附曲线(Des)。其中 a1 和 a2 的吸附曲线较为平滑。在相对压力(P/P₀)较低 (0~0.8)时,吸附与脱附曲线几乎重叠,其含有一 端封闭的Ⅱ型不透气性孔;当相对压力(P/P₀)较高 (0.8~0.9)时,吸附与脱附曲线之间存在吸附回线, 说明其含有开放型 I 类孔。图 2 中的 a3 和 a4 中的吸 附曲线带有明显的拐点,在 P/P₀ 较高(0.8~0.9)时, 吸附曲线与脱附曲线并没有完全重合,说明其中存 在开放型透气性 I 类孔或"墨水瓶"型孔,也可能存 在一端封闭的不透气性 II 类孔。

不同热解温度下制备的烟草秸秆生物炭的脱附 曲线与吸附曲线并没有完全重合,并出现滞后现象, 甚至在相对压力小于 0.14 时还有氮气没有完全脱附, 可能是因为氮气进入烟草秸秆生物炭中的层状结构 并吸附在其中^[30]。

由表 4 可知, 生物炭的比表面积、平均孔径和 比孔容均随着热解温度的升高先变大后变小。BET 比表面积、孔径、比孔容在热解温度为 400 ℃ 时急 剧上升, 与 300 ℃ 时相比, 其比表面积、孔径、比 孔容分别增加了 110.83%、56.80% 和 80.00%, 且均 在 400~500 ℃ 达到较高水平, 说明此时烟草秸秆生 物炭的孔隙度最大。

表 4 烟秆生物炭的比表面积和孔结构参数

Table 4	specific surface are	a and pore structu	re parameters o	i tobacco-staik biochai unde	i different pyrofysis ten	iperatures
执解沮宦	BET比表面积	比孔容	平均孔径	t-Plot微孔比表面积	中孔比表面积	中孔孔容
XX用于1000人 Temperature	BET specific	Specific pore	Average	t-Plot micropore specific	Mesopore specific	Mesopore
(\mathcal{C})	surface area	volume	poresize	surface area	surface area	pore volume
(2)	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)	$(m^2 g^{-1})$	$(m^2 g^{-1})$	$(cm^3 g^{-1})$
100	0.824	0.001	1.847	0.146	0.370	0.002
200	1.619	0.003	1.847	0.286	0.928	0.005
300	2.880	0.005	1.766	0.800	1.522	0.008
400	6.072	0.009	2.769	0.955	3.294	0.011
500	6.849	0.011	4.543	0.579	4.477	0.015
600	5.269	0.008	3.794	-	3.491	0.014
700	4.659	0.008	3.694	-	3.294	0.011
800	1.199	0.003	5.439	-	1.046	0.004

注:"-"未检测到数值。

根据孔的大小可将孔分为微孔、中孔和大孔, 其中微孔(<2nm)对生物炭的比表面积贡献最大, 有利于吸附更多的大分子以及小分子物质,中孔 (2~50nm)和大孔(>50nm)主要对土壤通透性 和输水性产生作用。在100~500℃时,微孔比表面 积先升后降;在热解温度为600~800℃时,没有测 量到微孔比表面积的具体数值。在不同热解温度下 制备的烟草秸秆生物炭中,其中孔比表面积和中孔 孔容均随着热解温度的升高呈现出先升高后降低的 趋势,且均在500℃时最大。在同一热解温度下制 备的烟草秸秆生物炭中,其中孔比表面积明显大于 其微孔比表面积;同时由表5可知,孔径和比表面 积之间存在极显著相关关系,说明其中孔所占比例 较大。

	Table 5 Correlation analysis of tobacco-stalk blochar pore parameters			
	温度	比表面积	孔径	比孔容
	Temperature	Specific surface area	Pore size	Specific pore volume
温度	1	0.321	0.900**	0.416
比表面积	0.321	1	0.308	0.989**
孔径	0.900**	0.308	1	0.393
比孔容	0.416	0.989**	0.393	1

表 5 烟秆生物炭孔隙参数的相关性分析

由图 3、图 4 可知,在不同热解温度下制备的烟 草秸秆生物炭中,孔径为 2 nm ~ 50 nm 的孔为中孔, 其比孔容和比表面积均处于较高水平,说明烟草秸 秆生物炭的孔隙结构以中孔为主;同时,比孔容和 比表面积的孔峰均主要集中在 2 nm ~ 10 nm 的中孔, 说明烟草秸秆生物炭的孔隙结构是以 2 nm ~ 10 nm 的中孔为主。

Fig.3 Specific pore volume distribution of tobacco-stalk biochar under different pyrolysis temperatures

图 4 烟秆生物炭比表面积分布曲线 Fig.4 Specific area distribution of tobacco-stalk biochar under different pyrolysis temperatures

3 讨论

本研究结果表明,热解温度对烟秆生物炭的特 性产生了重要影响,主要体现在生物炭元素组成及 含量、表面化学特性、孔性特征等方面。

不同热解温度下制备的烟草秸秆生物炭中的矿 质元素含量随着热解温度的升高而增加并维持在较 高水平,尤其是在热解温度为 400 ℃ 时其含量增加 最为显著。烟草秸秆制备的生物炭中矿质元素的较 多,是由于烟草对 K、Ca等矿质元素的吸收和积累。 烟草秸秆生物炭施入土壤后,会将这些矿质元素释 放并促进作物生长^[31-32]。在生物炭的制备过程中,随 着生物质原料的脱水、裂解和炭化,其质量和产率 降低,其浓度反而升高^[33]。叶协锋等^[24]的研究发现 烟草秸秆生物炭的 pH 会随着热解温度的升高而变大, 这与本文中碱性矿质元素 K、Mg、Ca 含量的变化规 律相一致。全球约有 30% 的土壤偏酸,而生物炭对 酸性土壤具有更好的改良作用^[34-35]。

安增莉^[32] 对水稻生物炭和猪粪生物炭研究指出, 随着热解温度升高,生物炭中的烷烃逐渐芳构化, 罗煜^[36] 等研究中,随着炭化终温的提高,生物炭的 芳构化程度提高,脂族性降低,热稳定性提高,与 本研究中随着热解温度逐渐升高甲基和亚甲基等基 团的大量降解转化、芳香化结构提高的研究规律是 一致的。在热解温度为 100~300 ℃时,烟草秸秆并 不会大量分解^[36],而是以水分散失为主,所以 C、N 含量、水分子和羧酸根等官能团的含量较多。在热 解温度为 400~800 ℃时,烟草秸秆开始裂解和炭 化^[37],甲烷、乙酸等物质挥发 ^[38],纤维素和半纤维 素开始大量裂解并产生 CO₂、CO 以及含氮气体进行 释放,所以生物炭中的 C、N 含量的减少,C=C 和 SiO₂ 增多。

当热解温度为 100~500 ℃ 时,氮气吸附量、比 表面积、比孔容和中孔孔容等指标均逐渐升高。这 可能是因为:一、在热解温度相对较低时,烟草秸 秆中水分、烟草秸秆中易挥发的物质和有机物分解 产生的气体逸出^[38],从而产生了较丰富的孔隙结构; 二是因为烟草秸秆本身含有海绵状结构,当原有的 生物质结构在热解过程中消失后,多孔的炭架结构 得以保留。当热解温度为 600~800 ℃ 时,这些指标 又随着热解温度的进一步升高而逐渐降低,这是 因为此时焦油填满了部分孔隙;另外,过高的温度 可能使烟草秸秆生物炭的孔隙结构变形、坍塌和 贯通^[39]。

不同热解温度下制备的烟草秸秆生物炭的孔隙 结构主要以 2~10 nm 的中孔为主,其中不仅有一端 封闭的 II 型不透气性孔,还存在开放型透气性 I 类 孔或"墨水瓶"型孔。

4 结论

热解温度是影响烟草秸秆生物炭理化性质的重 要因素。在热解温度为 100~400 ℃ 时, 矿质元素含 量增加较快;其C元素、N元素含量和C/N随热解 温度的升高逐渐变小,C/N在热300~500℃时基本 不变;随着热解温度的升高,烟草秸秆生物炭中的 羟基、甲基、亚甲基、水分子和羧酸根逐渐减少, 芳香性C=C、二氧化硅、碳酸钙和硫酸钾逐渐增加; 热解温度为400~500℃时,氮气吸附量、比表面积、 比孔容、平均孔径、中孔比表面积和中孔孔容均处 于较高水平;不同热解温度下制备的烟草秸秆生物 炭的孔隙结构均以2~10 nm的中孔为主。综上所述, 烟草秸秆生物炭在400~500℃时,其孔隙结构最为 复杂,矿质元素含量处于较高水平,所以制备烟草 秸秆生物炭的最佳温度为400~500℃。

参考文献:

- [1] 高利伟,马林,张卫峰,等.中国作物秸秆养分资源数量估算
 及其利用状况[J].农业工程学报,2009,25(7):173-179.
- [2] 程宝玉, 吴娟霞, 陈卫华, 等. 豫西烟草脉斑病发生规律及药剂 防治研究[J]. 烟草科技, 2002, (7): 46-48.
- [3] 尚志强,张晓海,邵 岩,等.秸秆还田和覆盖对烤烟生长发育 及品质的影响[J].烟草科技,200,6(1):50-53.
- [4] Agrupis S, Maekawa E, Suzuki K. Industrial utilization of tobacco stalks, 2: Preparation and characterization of tobacco pulp by steam explosion pulping[J]. Journal of Wood Science, 2000, 46(3): 222 – 229.
- [5] Carlos M, Teresa F, Ramón G, et al. Preparation of hydrolysates from tobacco stalks and ethanolic fermentation by Saccharomyces cerevisiae[J]. World Journal of Microbiology and Biotechnology, 2002, 18(9): 857 – 862.
- [6] Demirbaş A. Analysis of Liquid Products from Biomass via Flash Pyrolysis[J]. Energy Sources, 2002, 24(24): 337 – 345.
- [7] 杨 华. 从烟草废弃物中提取天然烟碱技术的研究[J]. 环境导报, 1994, (5): 14-15.
- [8] 朱大恒.利用烟草秸秆生产生物有机肥的方法:中国, 98106838.3[P]. 1999. 10-13.
- [9] 高 明, 郭灵燕, 席 宇, 等. 烟梗生物发酵制造有机肥[J]. 烟草 科技, 2010, (12): 57-60.
- [10] Sohi S P, Krull E, Lopez-Capel E, et al. Chapter 2 A Review of Biochar and Its Use and Function in Soil[J]. Advances in Agronomy, 2010, 105(1): 47 – 82.
- [11] Zhang L, Xu C, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion & Management, 2010, 51(5): 969 – 982.
- [12] 袁金华, 徐仁扣. 生物质炭的性质及其对土壤环境功能影响的 研究进展[J]. 生态环境学报, 2011, 20(4): 779 - 785.
- [13] Goldberg E D. Black carbon in the environment: properties and distribution[J]. Environmental Science & Technology, 1985, 37(2): 1689-1691.

- [14] Schmidt M W I, Noack A G. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges[J].
 Global Biogeochemical Cycles, 2000, 14(3): 777 – 793.
- [15] Braida W J, Pignatello J J, Lu Y, et al. Sorption hysteresis of benzene in charcoal particles[J]. Environmental Science & Technology, 2003, 37(2): 409 – 417.
- [16] Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity[J]. Soil Biology & Biochemistry, 2009, 41(6): 1301 – 1310.
- [17] Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soil[J]. Soil Science Society of America Journal, 2006, 70(5): 1719 – 1730.
- [18] Cheng C H, Lehmann J, Engelhard M H. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence[J]. Geochimica et Cosmochimica Acta, 2008, 72(6): 1598 – 1610.
- [19] Titirici M M, Thomas A, Yu S H, et al. A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization[J]. Chemistry of Materials, 2007, 19(17): 4205 – 4212.
- [20] Cornelissen G, Kukulska Z, Kalaitzidis S, et al. Relations between environmental black carbon sorption and geochemical sorbent characteristics[J]. Environmental Science & Technology, 2004, 38(13): 3632 – 40.
- [21] 刘玉学, 王耀锋, 吕豪豪, 等. 不同稻秆炭和竹炭施用水平对小 青菜产量、品质以及土壤理化性质的影响[J]. 植物营养与肥料 学报, 2013, 19(6): 1438 - 1444.
- [22] 陈心想,何绪生,耿增超,等.生物炭对不同土壤化学性质、小麦和糜子产量的影响[J].生态学报,2013,33(20):6534-6542.
- [23] 叶协锋, 刘红恩, 孟 琦, 等. 不同类型烟秸秆化学组分分析[J]. 烟草科技, 2013, (10): 76-79.
- [24] 叶协锋,于晓娜,孟 琦,等.烤烟秸秆炭化后理化特性分析[J]. 烟草科技,2015,(5):14-18.
- [25] 周涵君, 于晓娜, 孟 琦, 等. 热解温度对油菜秸秆炭理化特性及孔隙结构的影响[J]. 河南农业大学学报, 2018, 52(6): 983-990.
- [26] Chen B L, Zhou D D, Zhu L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137 – 5143.
- [27] 安增莉, 侯艳伟, 蔡 超, 等. 水稻秸秆生物炭对Pb(II)的吸附特性[J]. 环境化学, 2011, 30(11): 1851-1857.
- [28] 陈再明, 陈宝梁, 周丹丹. 水稻秸秆生物碳的结构特征及其对有 机污染物的吸附性能[J]. 环境科学学报, 2013, (1): 9-19.
- [29] 刘 辉, 吴少华, 孙 锐, 等. 快速热解褐煤焦的比表面积及孔 隙结构[J]. 中国电机工程学报, 2005, 25(12): 86-90.
- [30] 近藤精一. 吸附科学[M]. 化学工业出版社, 2006.
- [31] 郭 平, 王观竹, 许 梦. 不同热解温度下生物质废弃物制备的 生物质炭组成及结构特征[J]. 吉林大学学报:理学版, 2014, (4): 855-860.

- [32] 安增莉. 生物炭的制备及其对Pb(II)的吸附特性研究[D]. 华侨 大学, 2011.
- [33] Braadbaart F, Poole I. Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts[J]. Journal of Archaeological Science, 2008, 35(9): 2434 – 2445.
- [34] 袁金华, 徐仁扣. 稻壳制备的生物质炭对红壤和黄棕壤酸度的 改良效果[J]. 生态与农村环境学报, 2010, 26(5): 472 - 476.
- [35] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J].

Bioresource Technology, 2011, 102(3): 3488 – 3497.

- [36] Sevgi Ş, Mukaddes C. Pyrolysis of pine (*Pinus Brutia* Ten.) chips:
 1. Effect of pyrolysis temperature and heating rate on the product yields[J]. Energy Sources, 2002, 24(4): 347 355.
- [37] 罗 煜, 赵立欣, 孟海波. 不同温度下热裂解芒草生物质炭的理 化特征分析[J]. 农业工程学报, 2013, (13): 208 - 217.
- [38] 于晓娜. 烟秆生物炭的理化性质及其在烤烟上的应用[D]. 河南 农业大学, 2017.
- [39] 林晓芬,张 军, 尹艳山,等. 生物质炭孔隙分形特征研究[J]. 生物质化学工程, 2009, 43(3): 9-12.

Physico-chemical Characteristics of Biochars Prepared by Pyrolysis of Tobacco-stalk under Different Temperatures

XU Liang¹, YU Xiao-na¹, LI Xue-li², WANG Yue-lin¹, SONG Jia-qian¹, YE Xie-feng¹, LU Jian^{3*}

(1. Tobacco Science College of Henan Agricultural University/National Tobacco Cultivation and Physiology and Biochemistry

Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou 450002, China;

2. China Tobacco Corporation Staff Training College, Zhengzhou 450008, China;

3. Xichang Branch of Liangshan Prefecture company of Sichuan tobacco company, Xichang 615000, China)

Abstract: The tobacco stalk was carbonized under different temperatures from 100 $^{\circ}$ C to 800 $^{\circ}$ C, and then the basic physical and chemical properties of biochars were measured. The results showed that the mineral micro-element contents of tobacco-stalk biochar were increased with the increase of pyrolysis temperature at 100-400 $^{\circ}$ C and kept relatively stable at 400-500 $^{\circ}$ C. Mineral macro-element contents were showed overall an increased trend with the pyrolysis temperature rise. The contents of carbon (C) and nitrogen (N) were increased gradually from 100 $^{\circ}$ C to 300 $^{\circ}$ C and then were declined from 400 $^{\circ}$ C to 800 $^{\circ}$ C, and the C/N ratio was relatively stable at 300-500 $^{\circ}$ C. With the increase of pyrolysis temperature, surface functional groups of tobacco-stalk biochar get condensed and its aromatization degree was heightened. With the pyrolysis temperature rise, the porosity of tobacco-stalk biochar was increased first and then decreased. The BET specific surface area, pore size and pore volume of tobacco-stalk biochar were the highest at 400-500 $^{\circ}$ C. The mesopores were the main type of pores in tobacco-stalk biochar and mainly consisted of ink-bottle-like pores. The tobacco-stalk-biochar had higher macro- and micro elements, stable C/N, and complex pore structure at 400-500 $^{\circ}$ C.

Key words: Tobacco-stalk; Biochar; Pyrolysis temperature; Physical property; Chemical property

[责任编辑:张玉玲]