滨海盐度梯度土壤中固氮菌和 反硝化菌的分布特征

宋延静1,马 兰1*,张晓黎2,王 洁1,单 燕1,李俊林1

(1. 山东省蚕业研究所,山东烟台 264002; 2. 中国科学院烟台海岸带研究所,山东烟台 264003)

摘 要:【目的】为探讨滨海土壤盐渍化过程对氮转化的影响,本研究分析了滨海盐土自然盐度梯度下固氮菌和反硝 化菌的分布特征。【方法】在莱州湾南岸及黄河口采集自然盐度梯度(0.64%~5.18%)土壤样品,人为划分为低盐度 (0.64%~0.76%)、中盐度(1.25%~2.39%)、高盐度(3.49%~5.18%)三个梯度,利用荧光定量 PCR 和末端限制 性片段长度多态性(T-RFLP)技术分析不同盐度梯度土壤中固氮菌(*nifH*基因)和反硝化菌(*nosZ、nirS、nirK*基因) 的丰度、多样性及群落结构。【结果】固氮菌*丰度*在低盐区显著高于中、高盐区(*P*<0.05)。Spearman 相关分析显示, *nifH*基因拷贝数与土壤 NO₃含量显著正相关(*P*<0.05),Shannon 指数与土壤平均粒径(d0.5)显著正相关(*P*< 0.05)。典范对应分析表明,*nifH*基因群落结构与土壤盐度显著相关(*P*=0.04)。反硝化菌在该区域盐土中以*nirK*基 因型占主导,*nirK、nirS*和 *nosZ*三种基因的拷贝数受盐度影响不大,但(*nirK*+*nirS*)/*nosZ*拷贝数比值随盐度升高而 显著升高。无机氮营养是影响该区域盐土反硝化菌群落结构的关键环境因子。【结论】滨海土壤盐渍化程度显著影响 固氮菌的丰度、群落结构和反硝化过程功能基因的比值,可能影响土壤氮循环过程及 N₂O 排放,进而对全球气候变化 产生重要影响。

关 键 词: 滨海盐土; 固氮菌; 反硝化菌; 盐度梯度; 环境响应 中图分类号: X172 **文献标识码:** A **文章编号:** 0564-3945(2024)02-0471-12

DOI: 10.19336/j.cnki.trtb.2023011002

宋延静,马 兰,张晓黎,王 洁,单 燕,李俊林. 滨海盐度梯度土壤中固氮菌和反硝化菌的分布特征 [J]. 土壤通报, 2024, 55(2): 471-482

SONG Yan-jing, MA Lan, ZHANG Xiao-li, WANG Jie, SHAN Yan, LI Jun-lin. Distribution Patterns of Abundance and Community Composition of Nitrogen-fixing and Denitrifying Bacteria along the Salinity Gradient in Coastal Soils[J]. Chinese Journal of Soil Science, 2024, 55(2): 471 – 482

【研究意义】盐渍化是土壤退化的主要方式之一。滨海土壤盐渍化主要由海水侵灌造成,呈现明显的盐度梯度特征^[1]。在全球气候变暖、海平面抬升的背景下,滨海土壤盐渍化面积可能逐渐扩大。盐 渍化改变了土壤氮素的转化规律,影响作物对氮素 的吸收,最终影响土壤的生产力^[2-3]。因此,研究盐 渍化土壤氮素的转化规律和微生物驱动机制对高效 利用和管理改良该类土壤有重要意义。固氮过程将 空气中游离的氮气转化为植物可以利用的铵态氮

(NH4⁺),对提高土壤肥力有重要意义,而反硝化 过程则导致土壤中氮营养的流失^[4],因此,固氮和反 硝化过程是氮循环的重要环节,直接影响着滨海土 壤氮的可利用性^[5-6]。一般来讲,盐分对土壤固氮和 反硝化过程的影响可能通过以下几个机制来实现^[7]: ①盐渍化通过离子取代作用导致 NH₄+释放增加,增 加的 NH₄+可能抑制固氮活性;②海水侵灌导致土壤 中 SO₄²⁻含量增加,影响土壤的硫酸盐还原过程,而 很多硫酸盐还原菌都具有固氮功能;③盐度改变微 生物胞外酶的稳定性,影响大分子有机质的矿化分 解;④离子强度增加降低了土壤对有机质的吸附, 从而影响有机底物的可利用性,有机质含量和质量 的改变又会影响异养的固氮菌和反硝化菌。**【前人** 研究进展】微生物是氮循环的主要驱动者,土壤盐 渍化通过影响微生物的丰度和组成最终影响氮的转

*通讯作者: E-mail: cysmalan@shandong.cn

收稿日期: 2023-01-21; 修订日期: 2023-05-11

基金项目:国家重点研发计划项目(2021YFD1900903),山东省自然科学基金项目(ZR2018PC005),山东省农业科学院科技创新工程项目 (CXGC2022F06)资助

作者简介: 宋延静(1985—),女,山东烟台人,博士,助理研究员,主要从事土壤微生物生态、氮循环及盐碱滩涂生物修复技术研究。E-mail: yjsong1214@163.com

化过程^[5,8]。Moisander 等基于 nifH 基因对美国切萨 皮克湾河口自然盐度梯度(0.8%~2.63%)沉积物中 的固氮菌群落进行研究,发现 nifH 基因的丰富度、 Simpson 和 Shannon 指数均呈现由上游(低盐度)至 河口(高盐度)逐渐降低的趋势^[9]。Wang等研究表 明,九龙江口红树林沉积物(人为设置盐度0%~ 3%)中反硝化 nirK 和 nosZ 基因拷贝数均与盐度呈 显著负相关^[10]。然而, Franklin 等在研究不同盐度梯 度(0%~0.2%)湿地土壤反硝化菌丰度与盐度的关 系时发现, nirS 基因拷贝数与盐度呈显著正相关^[11]。 这些结果暗示了土壤固氮和反硝化过程可能对不同 的盐度具有不同的反馈模式。【本研究切入点】目 前,有关土壤氮循环微生物对盐度梯度的响应机制 研究主要基于人为添加 NaCl 设置不同的梯度[10],而 自然盐度梯度的形成往往比较复杂,不是简单的 NaCl 浓度梯度,因而人为模拟很难表征自然真实的 情况。基于自然盐度梯度的研究在荒漠土壤中有报 道[12],而在滨海盐渍化旱地土壤中还未见报道。莱 州湾河口区土壤具有明显的盐度梯度特征,前期研究 发现,该环境盐度对氨氧化微生物的群落分布具有 强烈影响^[13]。【**拟解决的问题**】本研究利用荧光定 量 PCR 和末端限制性片段长度多态性(T-RFLP)等 分子生物学手段,分析了莱州湾南岸和黄河口滨海 盐土不同盐度梯度下固氮菌和不同基因型反硝化菌 的丰度、组成及分布特征,可为深入研究滨海盐渍 化土壤氮营养循环特征及其功能类群的适应机制提 供理论依据。

1 材料与方法

1.1 研究区域与样地概况

研究区域位于黄河口和莱州湾南岸的白浪河口、 堤河口和胶莱河口(119°09'~119°36'E,36°56'~ 37°46'N),该区域是20世纪80年代以来中国最严 重、最大的海水入侵地区,盐土面积高达2870 km², 盐度范围约为0.20%~5.02%^[1]。全年平均气温12.9 °C,降水量为542.3~842.0 mm。由于盐分的抑制作 用以及盐渍化造成的土壤结构差、基础肥力弱等原 因,农作物在该区域极难生长。黄河口盐土植被主 要为茅草、补血草、柽柳、芦苇、碱蓬;白浪河口 周围遍布养殖池塘和盐场,植被多为柽柳和碱蓬; 堤河是城市排污河,河口水体具有高氮、高有机质 的特征,两岸土壤植被以芦苇为主;胶莱河口采样 点周围植被也多为芦苇、茅草和碱蓬。

滨海盐土(旱地)样品采集于2014年7月份,

分别于黄河口(YR01~YR05)、白浪河口(DR01, DR02)、堤河口(DR01~DR03)和胶莱河口

(JR01~JR04)选取 14个不同盐渍化程度的站位^[13](图 1),每个站位采用五点法采集表层 0~5 cm 土壤样品,去除草根和石块后混合均匀。样品冰 上保存转移至实验室于-80 ℃ 冷冻保存,用于环境 因子测定和环境总 DNA 的提取。

1.2 土壤理化性质测定

参考鲍士旦和鲁如坤的土壤农化分析方法进行^[14-15]。土壤样品在实验室自然风干,研磨过 2 mm 筛后备用。利用 0.01 mol L⁻¹ 的 CaCl₂ 溶液浸提,经 充分搅拌,平衡 30 min,利用 pH 计测定 pH 值;加 入去离子水,水土比为 5:1,利用盐度计测定土壤 电导率,并换算成盐分含量(Salinity,%)。利用 烘干法测定土壤含水量(Moisture)。由于亚硝态氮

(NO₂⁻) 不稳定,在微生物的作用下易氧化为硝态 氮(NO₃⁻) 或还原为 NH₄⁺,因此-80 ℃ 冷冻的土壤 解冻后应立即进行三种形态氮的浸提和测定提取, 具体步骤为:5g鲜土中加入 25 mL 2 mol L⁻¹的 KCl 溶液浸提(液土比为 5:1),振荡 1 h 后过滤, 基于比色法利用连续流动分析仪(Auto Analyzer III) 测定 NH₄⁺、NO₃⁻和 NO₂⁻含量;利用元素分析仪

(Vario MACRO cube)测定土壤总氮(TN)含量, 再加入过量 1 mol L⁻¹的 HCl 去除无机碳,然后测定 土壤总有机碳(TOC)含量;采用激光粒度仪 (Marlvern Mastersizer 2000F)进行土壤粒径(Grain size)分析。所有指标均测量三次。

1.3 总 DNA 的提取

称取 0.5~1.0g 土壤样品,利用 FastDNA®SPIN® (MP Biomedical,美国)试剂盒按说明书步骤提取 DNA。提取 的 DNA 利用 微量紫外分光光度计 (NanoDrop2000c,美国)测定浓度及纯度,分装后 置于-80 ℃ 保存。

1.4 固氮菌 nifH基因和反硝化菌 nirS、nirK和 nosZ基因丰度分析

利用荧光定量 PCR 仪(ABI 7500 Fast,美国), 采用 SYBR Green 染料法测定固氮菌 *nifH* 基因和反 硝化菌 *nirK、nirS、nosZ* 基因的拷贝数,引物信息 见表 1。反应体系如下: Maxima SYBR Green PCR/Rox qPCR Master Mix (Fermentas) 10 µL,正 反向引物(10 µM)各1 µL,模板 DNA 1 µL,去离 子水补足至 20 µL。每个样品设三次重复,并设不加 模板的反应管为阴性对照。利用包含目标 DNA 基因 片段的质粒稀释 10⁻² 到 10⁻⁸ 来构建标准曲线。扩增

注:YR 黄河; BR 白浪河; DR 堤河; JR 胶莱河

Fig.1 Sampling location of salinity gradient soils in the southern coast of Laizhou Bay and the estuary of Yellow River

条件为: 95 ℃ 预变性 7 min, 95 ℃ 变性 1 min, *nifH* 基因 58 ℃ 退火 30 s, *nirS* 基因 57 ℃ 退火 40 s, *nirK* 基因 55 ℃ 退火 1 min, *nosZ* 基因 60 ℃ 退火 40 s, 40 个循环。最后按照 ABI 7500 Fast 实时荧光定 量检测系统默认程序制备熔解曲线: 95 ℃ 15 s, 60 ℃ 1 min, 95 ℃ 30 s, 60 ℃ 15 s, 检测是否存在非特异性扩增。所有 PCR 反应的扩增效率均在 90% 以上, 决定系数 (R^2) 均大于 98%。

	表 1	荧光定量 PCR 及 T-RFLP 涉及的引物信息
--	-----	---------------------------

Table 1	Information of	primers used for	or real-time PCR	(aPCR)) and T-RFLP analyses
I uoic I	monution of	princip used it	Ji rour time r Cit	(qr Crc	f and i iti Ei analyses

功能基因	分子手段	引物名称	序列信息	长度 (bp)	参考文献
Functional gene	Molecular Method	Primer	Sequence / (5'-3')	Length	References
nifH	Q-PCR/T-RFLP	polF	TGCGAYCCSAARGCBGACTC	342	[16]
		polR	ATSGCCATCATYTCRCCGGA		
nirS	Q-PCR/T-RFLP	Cd3aF	GTSAACGTSAAGGARACSGG	425	[9]
		R3cd	GASTTCGGRTGSGTCTTGA		
nirK	Q-PCR/T-RFLP	F1aCu	ATCATGGTSCTGCCGCG	472	[17]
		R3Cu	GCCTCGATCAGRTTGTGGTT		
nosZ	Q-PCR	nosZ2F	CGCRACGGCAASAAGGTSMSSGT	267	[18]
		nosZ2R	CAKRTGCAKSGCRTGGCAGAA		
	T-RFLP	nosZF	CGYTGTTCMTCGACAGCCAG	700	[19]
		nosZR	CATGTGCAGNGCRTGGCAGAA		

注: 简并碱基 R = A/G; N = A/G/C/T; H = A/T/C; S = G/C; Y = C/T; B = G/T/C

1.5 固氮菌 nifH 基因和反硝化菌 nirS、nirK、nosZ 基因群落结构的末端限制性片段长度多态性(T-RFLP)分析

采用末端限制性片段长度多态性(T-RFLP)方法分析固氮菌 nifH 基因和反硝化菌 nirS、nirK、nosZ 基因的组成和多样性。引物信息见表 1,其中每对引物的前引物 5'端标记有荧光基团 FAM。PCR 扩增产物利用 Ultra CleanTM PCR 纯化试剂盒

(MoBio Laboratories, Inc.)进行纯化,并用微量紫 外分光光度计测定纯化后的 DNA 浓度。将等量的 PCR 纯化产物(平均 7.5 µL)在 37 ℃ 水浴中进行 酶切(Fermentas)反应,其中 *nifH* 基因的限制性内 切 酶 采用 *Hhe*III、*Nde*II 和 *Mnl*I, *nosZ* 采用 *Msp*I 和 *Rsa*I, *nirS* 采用 *Hha*I 和 *Msp*I, *nirK* 采 用 *Hhe*III和 *Msp*I。酶切体系为 10×缓冲液 1.5 µL, 限制性内切酶 0.75 µL,模板 3 µL,灭菌的去离子水 补足至 15 µL, 37 ℃ 水浴 1 h。酶切产物送生工生物 工程(上海)股份有限公司(Sangon Biotech (Shanghai) Co., Ltd.)进行毛细管电泳检测。

1.6 数据处理与统计分析

末端限制性片段长度多态性(T-RFLP)的数据 在 Excel 表格中进行调整,去除荧光标记端 50 bp 以 内的 T-RF(末端片段),然后将长度在 200 bp 以内、 差别不超过 1 bp 的片段作为一个独立的 T-RF;长度 在 200~400 bp 之间、差别不超过 2 bp 的片段作为 一个独立 T-RF;400 bp 以上、差别不超过 3 bp 的片 段作为一个独立的 T-RF。去除每个样品中相对丰度 小于 1%的 T-RF 后进行后续分析。基于 T-RFLP 数 据,计算 T-RF 数目、均匀度(Evenness)指数和 Shannon 指数。

利用 SPSS 19.0 统计软件中的单因素方差分析 (ANOVA)检验盐度梯度对固氮菌 nifH 基因和反 硝化菌 nirS、nirK、nosZ 基因拷贝数和多样性的影 响,并利用最小显著性差异法(LSD)完成组间成 对比较(显著性水平分别为 0.05)。数据分析前先 进行对数转化保证数据符合正态分布和方差齐性。 利用 Spearman 相关性分析对不同功能基因丰度、多 样性指数与环境因子的相关性进行分析。通过 Primer-E 软件中的非参数多维排序(NMDS)分析 各基因的分布特征,并利用相似性分析(ANOSIM) 检验固氮菌和反硝化菌群落结构在不同盐度土壤间 的差异。通过 CANOCO 4.5 软件进行典范对应分析 (CCA),揭示影响功能基因群落组成的关键环境 因子。

2 结果与分析

2.1 土壤理化性质

研究区域土壤 pH 范围为 7.11~7.93, 属于弱碱 性土壤。盐度范围为 0.64% ~ 5.18%, 沿入海方向呈 升高趋势,其中黄河口 YR02站位盐度最高 (5.18%),堤河口 DR01 站位盐度最低(0.64%)。 NO, 为无机氮营养盐的主要形式,黄河口土壤 NO, -含量相对最低,范围为 4.71~9.94 mg kg-1,胶莱河 口土壤 NO, 含量最高,为 6.47~131.3 mg kg-1。土 壤总氮(TN)含量范围在 0.02%~0.35% 之间, 胶 莱河口和黄河口某些站位相对较高(>0.1%)。总 有机碳(TOC)含量在 0.33%~1.39% 之间,黄河口 相对较高,白浪河口最低。相反,白浪河口土壤的 平均粒径(d0.5)最大,为 77.60 μm,黄河口土壤 的平均粒径(d0.5)最小,为22.60 µm(表2)。基 于测得的盐度范围人为将所有盐土样品划分为低盐 度(0.64%~0.76%)、中盐度(1.25%~2.39%)、 高盐度(3.49%~5.18%)三个梯度,其中低盐度包 括站位 YR05、JR01、DR01, 中盐度包括站位 YR01、 YR04、BR01、BR02、DR03、JR02、JR03、JR04, 高盐度包括 YR02、DR02、YR03(表 2)。

2.2 固氮菌和反硝化菌丰度在不同盐度土壤间的比较
2.2.1 固氮菌 nifH 基因拷贝数在不同盐度土壤间的差异 低盐区土壤中固氮菌 nifH 基因的拷贝数最高,范围为 3.36×10⁸~2.98×10⁹ 拷贝数 g⁻¹ 干土,平均值为 1.22×10⁹ 拷贝数 g⁻¹ 干土。中盐区土壤中 nifH 基因的拷贝数最低,范围为 9.61×10⁷~9.44×10⁸ 拷贝数 g⁻¹ 干土,平均值为 5.87×10⁸ 拷贝数 g⁻¹ 干土。
LSD 检验显示二者存在显著差异(P=0.036)。高盐区土壤固氮菌 nifH 基因拷贝数与中盐区、低盐区的差异不显著(P>0.05)(图 2)。

2.2.2 反硝化菌 nirS、nirK、nosZ基因拷贝数在不同盐度土壤间的差异 莱州湾南岸及黄河口滨海盐 土中的反硝化菌以 nirK 基因型为主, nirK 基因拷贝 数比 nosZ、nirS 基因拷贝数高出 3 到 4 个数量级, 呈现出 nirK > nosZ > nirS 的趋势(图 3)。nirK 基 因拷贝数在低、中、高盐度区域总体呈升高趋势, 低盐区拷贝数平均为 1.76 × 10° 拷贝数/g 干土;中盐 区平均为 3.54 × 10° 拷贝数 g⁻¹ 干土;高盐区平均为 3.90 × 10° 拷 贝 数 g⁻¹ 干土,但区域间差异不显著 (ANOVA, P = 0.910)。nirS 基因在中盐区拷贝数

475

表 2 莱州湾南岸及黄河口滨海盐土理化性质

Table 2 Physicochemical properties of saline soils collected from the southwestern coast of Laizhou Bay and the estuary of Yellow River

站台	盐度梯度	盐度		含水量	硝态氮	亚硝态氮	铵态氮	总氮	总有机碳	平均粒径
Sompling site	Salinity	Salinity	pН	Moisture	NO_3^-	NO_2^-	$\mathrm{NH_4^+}$	TN	TOC	Mean grain size
Sampling site	gradient	(%)	_	(%)	$(mg kg^{-1})$	$(mg kg^{-1})$	$(mg kg^{-1})$	(%)	(%)	(d0.5, µm)
YR01	中盐度	2.39 ± 0.09	7.31 ± 0.10	22.83 ± 0.50	5.94 ± 0.28	0.79 ± 0.01	0.13 ± 0.01	0.09 ± 0.00	0.83 ± 0.01	41.55 ± 2.36
YR02	高盐度	5.18 ± 0.05	7.86 ± 0.04	7.07 ± 1.78	7.06 ± 0.32	0.52 ± 0.05	0.07 ± 0.01	0.05 ± 0.00	0.50 ± 0.05	16.35 ± 1.23
YR03	高盐度	3.49 ± 0.16	7.58 ± 0.03	21.72 ± 1.04	4.71 ± 0.21	0.47 ± 0.04	0.09 ± 0.02	0.06 ± 0.00	0.48 ± 0.04	10.46 ± 1.00
YR04	中盐度	1.25 ± 0.19	7.29 ± 0.02	24.76 ± 0.59	9.94 ± 0.56	0.86 ± 0.02	0.13 ± 0.02	0.10 ± 0.02	0.84 ± 0.02	25.84 ± 1.56
YR05	低盐度	0.76 ± 0.02	7.24 ± 0.23	30.48 ± 0.85	5.76 ± 0.28	0.89 ± 0.18	0.12 ± 0.02	0.09 ± 0.00	0.88 ± 0.02	18.78 ± 2.78
BR01	中盐度	2.01 ± 0.08	7.63 ± 0.10	23.11 ± 1.00	3.85 ± 0.18	0.44 ± 0.02	0.04 ± 0.16	0.02 ± 0.00	0.46 ± 0.09	83.9 ± 5.67
BR02	中盐度	1.61 ± 0.11	7.93 ± 0.23	21.93 ± 0.76	22.45 ± 2.34	0.40 ± 0.01	0.06 ± 0.00	0.03 ± 0.00	0.42 ± 0.02	71.30 ± 6.45
DR01	低盐度	0.64 ± 0.01	7.54 ± 0.10	25.67 ± 1.39	5.91 ± 0.25	0.45 ± 0.16	0.07 ± 0.00	0.05 ± 0.00	0.42 ± 0.01	58.56 ± 3.20
DR02	高盐度	4.74 ± 0.01	7.27 ± 0.11	17.99 ± 2.64	57.98 ± 5.60	0.77 ± 0.09	0.11 ± 0.00	0.07 ± 0.00	0.75 ± 0.09	74.27 ± 6.86
DR03	中盐度	1.44 ± 0.00	7.52 ± 0.14	19.06 ± 2.34	4.61 ± 0.20	0.54 ± 0.20	0.07 ± 0.02	0.03 ± 0.00	0.53 ± 0.06	69.45 ± 5.69
JR01	低盐度	0.72 ± 0.01	7.43 ± 0.11	24.86 ± 2.10	6.47 ± 0.32	0.89 ± 0.07	0.09 ± 0.02	0.06 ± 0.00	0.86 ± 0.01	35.49 ± 2.45
JR02	中盐度	1.27 ± 0.13	7.11 ± 0.12	19.34 ± 0.70	131.3 ± 9.67	1.41 ± 0.35	0.27 ± 0.08	0.35 ± 0.10	1.39 ± 0.04	25.07 ± 1.58
JR03	中盐度	1.55 ± 0.18	7.12 ± 0.10	18.72 ± 0.38	18.48 ± 0.42	0.34 ± 0.04	0.09 ± 0.02	0.06 ± 0.00	0.33 ± 0.00	76.4 ± 6.89
JR04	中盐度	1.63 ± 0.04	7.45 ± 0.23	23.03 ± 0.25	14.4 ± 0.68	0.38 ± 0.05	0.05 ± 0.01	0.03 ± 0.00	0.38 ± 0.02	61.11 ± 5.56

注:表中数据为平均值 ± 标准误, n = 3; d0.5表示平均粒径,指粒度累计分布中50%所对应的直径。

注:相同字母表示组间差异不显著, P>0.05; 不同字母表示组间差异 显著, P≤0.05

图 2 盐度梯度土壤中固氮菌 nifH 基因拷贝数的比较

Fig.2 Comparison of nitrogen-fixing bacterial *nifH* gene copies in salinity gradient soils

最高,平均为 4.66×10^5 拷贝数 g^{-1} 干土;低盐区和 高盐区分别为 3.57×10^5 拷贝数 g^{-1} 干土和 3.82×10^5 拷贝数 g^{-1} 干土,三者间的差异亦不显著(P = 0.328)。nosZ基因拷贝数在不同盐度土壤间差别不 大,范围为 $1.33 \times 10^6 \sim 1.73 \times 10^6$ 拷贝数 g^{-1} 干土。 (nirS + nirK)/nosZ比值常作为反硝化过程温室气 体 N_2O 排放的指征,对不同盐度梯度下滨海盐土中 (nirS + nirK)/nosZ比值进行比较发现,中、高盐 度土壤(nirS + nirK)/nosZ比值显著高于低盐度土 壤(P < 0.05)(图 3)。

2.3 固氮菌和反硝化菌群落结构在不同盐度土壤间的比较

2.3.1 固氮菌 nifH 基因多样性和群落结构在不同盐度土壤间的差异 各样品固氮菌 nifH 基因的 T-RF

图 3 盐度梯度土壤中 nirK、nirS、nosZ 基因型反硝化菌丰度及比值的比较

Fig.3 Comparison of abundances and ratios of nirK-, nirS-, and nosZ- denitrifying bacteria in salinity gradient soils.

数目在 $13 \sim 31$ 之间,不同盐度土壤间固氮菌的香农 威纳(Shannon)指数差异不显著(P = 0.10)(表 3), 但低、中盐度土壤中固氮菌的均匀度(Evenness)指 数显著高于高盐区(P < 0.05)。NMDS 排序显示 (图 4),低盐度的两个土壤样品(DR01、YR05) 聚类到一起,大部分高盐度和中盐度土壤样品聚类 在一起。ANOSIM 检验证实,固氮菌 *nifH* 基因的群 落结构总体受盐度梯度影响显著(*R* = 0.384, *P* = 0.027,表4),其中低、中盐度土壤间差异最明显 (*P* = 0.024)。

表 3 法	滨海盐土固氮菌和反硝化菌多样性指数在不同盐度土壤组间的比较(ANOVA	、和 LSD 分析)
-------	-------------------------------------	------------

Table 3 Comparison of diversity index of nitrogen-fixing and denitrifying bacteria among different salinity soils (ANOVA with LSD test)

目的基因	多样性指数	低盐度	中盐度	高盐度	P值
Target gene	Index of diversity	Low salinity	Medium salinity	High salinity	P Value
nifH	T-RF 数目	20 ± 5	25 ± 6	18 ± 4	0.198
	均匀度指数	$0.82\pm0.07^{\rm a}$	$0.87\pm0.03^{\rm a}$	$0.74\pm0.16^{\rm b}$	0.072
	香农威纳指数	2.45 ± 0.37	2.77 ± 0.33	2.13 ± 0.63	0.100
nosZ	T-RF数目	85 ± 14	52 ± 36	73 ± 35	0.416
	均匀度指数	0.83 ± 0.00	0.80 ± 0.74	0.73 ± 0.80	0.243
	香农威纳指数	3.67 ± 0.12	2.95 ± 0.95	3.04 ± 0.65	0.58
nirS	T-RF数目	20 ± 13	30 ± 18	28 ± 15	0.706
	均匀度指数	0.90 ± 0.67	0.84 ± 0.87	0.80 ± 0.10	0.419
	香农威纳指数	2.43 ± 0.75	2.59 ± 0.49	2.53 ± 0.23	0.906
nirK	T-RF数目	50 ± 25	53 ± 23	59 ± 22	0.773
	均匀度指数	0.81 ± 0.15	0.83 ± 0.61	0.85 ± 0.43	0.816
	香农威纳指数	3.08 ± 0.13	3.31 ± 0.79	3.42 ± 0.28	0.728

注:同行不同字母标注表示不同盐度土壤间差异显著(LSD-test, P < 0.05),无字母标注表示不同盐度土壤间差异不显著(P > 0.05)。

图 4 基于 nifH、nirK、nirS、nosZ 基因的固氮菌和反硝化菌群落结构的非度量多维标度(NMDS)分析

Fig.4 NMDS analyses of the community structures of nitrogen-fixing bacteria and denitrifying bacteria based on *nifH*, *nirK*, *nirS* and *nosZ* genes in the saline soils.

2.3.2 反硝化菌 nirS、nirK 和 nosZ 基因多样性和群落结构在不同盐度土壤间的差异 除了样品 YR05的 nosZ、nirK 基因以及 JR02的 nirK 基因没有获得理想的 T-RFLP 结果外,其余各样品 nirS 基因的 T-

RF 的数目在 5~50 之间, *nirK* 基因的 T-RF 数目在 9~82 之间, *nosZ* 基因的 T-RF 数目在 8~107 之间。 *nosZ、nirS、nirK* 基因的均匀度指数和香农威纳指数 在盐度梯度间差异均不显著(ANOVA, *P* > 0.05)

表 4 盐度梯度土壤间固氮和反硝化菌群落结构的 ANOSIM 分析

 Table 4
 ANOSIM analyses for groupings of soil nitrogen-fixing and denitrifying bacterial communities according to the salinity

Sammey			
目的基因		R 统计	<i>P</i> 值
Target gene		R statistics	P value
nifH		0.384	0.027
	高vs.低	0.185	0.30
	高vs.中	0.164	
	中vs.低	0.024	
		0 177	0.186
nosz		0.177	0.180
	高vs.低	0.333	0.20
	高vs.中	0.156	0.248
	中vs.低	0.164	0.311
nirS		-0.01	0.458
	高vs.低	-0.111	0.60
	高vs.中	-0.054	0.521
	中vs.低	0.067	0.297
nivV		0 278	0.025
nırK		0.378	0.025
	局vs.低	0.417	0.10
	高vs.中	0.175	0.20
	中vs.低	0.61	0.028

注:显著性差异 ($P \le 0.05$) 被加粗显示。

(表3)。

所有土壤样品的 nirK 基因群落可基本分为低盐、 中盐和高盐 3 个组群(图 4)。ANOSIM 检验进一 步证实,土壤盐度对 nirK 基因型反硝化菌群落结构 具有显著影响(P=0.025,表4),中、低盐度土壤 间差异最大(P=0.028,表4)。nirS 基因分布也被 划分为三个群组(图 4),但各盐度土壤样品混合在 一起。ANOSIM 检验表明,nirS 基因型反硝化菌的 群落结构不受盐度影响(P=0.458,表4)。同样, nosZ 基因型反硝化菌的群落结构(图 4)受盐度影 响亦不显著(P=0.186,表4)。

2.4 固氮菌和反硝化菌丰度、多样性及群落结构与土 壤理化性质的关系

滨海盐土中 *nifH* 基因拷贝数与土壤 NO₃-含量显 著正相关(Spearman's 相关, *R*=0.316, *P*<0.05), Shannon 指数与土壤平均粒径(d0.5)显著正相关 (*R*=0.609, *P*<0.01)(表 5)。单峰模型(CCA) 排序发现, *nifH* 基因群落结构与土壤盐度显著相关 (*P*=0.04,蒙特卡罗检验,999次置换)(图 5)。

表 5 固氮菌 nifH 基因、反硝化菌(nirS、nirK 和 nosZ)基因拷贝数、Shannon 指数与土壤理化性质的 Spearman's 相关性

 Table 5
 Spearman's correlations (R value) of abundance and Shannon index of nitrogen-fixing bacterial nifH gene and denitrifying bacterial nirS, nirK, and nosZ genes with soil physiochemical properties

	-					-			
土壤理化性质	功能基因拷贝数及比值 Gene abundance and ratio					香农威纳指数 Shannon index			
soil physiochemical property	nifH	nirK	nirS	nosZ	(nirK + nirS) / nosZ	nifH	nirK	nirS	nosZ
рН	-0.114	-0.461*	-0.094	-0.181	-0.144	-0.081	0.676**	0.363	0.596*
盐度	-0.008	0.004	0.022	-0.033	0.007	0.099	0.465	-0.099	-0.046
含水量	-0.020	0.056	-0.302	0.144	0.154	0.081	-0.361	-0.042	0.240
平均粒径	0.171	0.159	0.300	0.062	0.106	0.609**	0.256	0.512	0.209
总氮TN	0.017	0.327*	-0.119	0.189	0.129	-0.270	-0.778**	-0.705**	-0.604**
总有机碳TOC	-0.274	0.106	-0.342*	0.046	0.102	-0.380	-0.778**	-0.793**	-0.692**
铵态氮NH ₄ +	-0.072	0.309*	-0.183	0.179	0.126	-0.332	-0.665**	-0.798**	-0.723**
亚硝态氮NO2 ⁻	-0.274	0.106	-0.197	0.147	0.102	-0.380	-0.778**	-0.793**	-0.692**
硝态氮NO₃ [−]	0.316*	0.138	0.437*	0.297	0.244	0.270	0.035	0.064	-0.046

注:显著相关性被加粗标注,*P<0.05;**P<0.01。

*nirK*基因拷贝数与土壤 pH 显著负相关(*R* = -0.461, *P* < 0.015, 表 5),与总氮和 NH₄+含量均显 著正相关(*R* > 0.300, *P* < 0.05)。*nirS*基因丰度与 土壤总有机碳显著负相关(*R* = -0.342, *P* < 0.05), 而与 NO₃-显著正相关(*R* = 0.437, *P* < 0.05)。*nirK* 与 *nosZ*基因的 Shannon 指数与 pH 显著正相关(*R* > 0.590, *P* < 0.05)。三种反硝化基因的 Shannon 指数 均随土壤总氮、总有机碳、NH₄+、NO₂-含量的升高 而降低(*R* < -0.600, *P* < 0.05,表 5)。*nirK*基因的 群落结构与土壤 NO₂⁻含量显著正相关(CCA, P = 0.037), *nirS* 基因群落结构与土壤 NH₄⁺含量显著相关(P = 0.045), 而土壤 NO₃⁻含量则是影响 *nosZ* 基因群落结构最关键的因子(P = 0.034)(图 5)。

3 讨论

本研究选取莱州湾南岸和黄河口自然盐度梯度 土壤为研究对象,分析不同盐度梯度下固氮菌和反

注:图中仅显示具有显著影响(P<0.05)的环境因子

图 5 影响滨海盐土固氮菌 *nifH* 基因和反硝化菌 *nirK*、*nirS*、*nosZ* 基因群落结构的关键因子(CCA 分析) Fig.5 The CCA analyses showed key factors significantly (*P* < 0.05) affecting nitrogen-fixing bacterial *nifH* gene and denitrifying bacterial *nirS*, *nosZ* and *nirK* gene community structures

硝化菌丰度及群落结构的差异以及与土壤理化性质 之间的相关性。总体来看,这些盐土的盐渍化程度 差异较大,盐度范围从 0.64% 到 5.18%,沿入海方 向逐渐升高,为典型的海水侵灌盐土。土壤属弱碱 性,总氮和总有机碳含量低于一般土壤水平^[20],个 别站位可能由于河口排污等原因,表现出极高的硝 酸盐浓度。

3.1 盐度是影响滨海盐土固氮菌丰度和群落组成的 重要因素

土壤固氮菌可将 N₂转化为植物可利用的 NH₄⁺, 提高土壤肥力,促进植物生长,而且很多类群兼具 溶磷、解钾功能^[21]。本研究发现,低盐度(0.64%~ 0.76%)盐土中固氮菌 *nifH* 基因拷贝数显著高于中 (1.25%~2.39%)、高(3.49%~5.18%)盐度 (图 2),表明 1% 以上的盐度显著抑制土壤固氮菌的生长。Hou等在研究长江口潮间带沉积物中的 nifH基因拷贝数时发现,高盐(约 1.4%)站位固氮 菌丰度最低,中盐(0.55%)站位 nifH基因拷贝数最高^[22]。同样,孙秀茹等对我国崇明东滩湿地固氮菌的研究中也发现,nifH基因拷贝数从低潮滩(高盐) 向高潮滩(低盐)逐渐增加的趋势明显,但最高值 出现在中等盐度(0.5%~1%)位点^[23]。这些结果暗 示了较低盐度(低于 1%)可能促进盐土或沉积物中 某些固氮菌类群的生长,例如硫酸盐还原菌^[24],从 而使 nifH基因丰度总体呈现增加的趋势;而超出一 定盐度阈值(例如 1%),大部分的低盐固氮菌类群 可能因无法忍受高盐胁迫而消亡,因而降低了 nifH 量的增加对 nifH 基因丰度具有明显促进作用,可以 解释为固氮菌生长优先利用简单氮源,如 NH4⁺和 NO3⁻,因为同化作用比固氮作用消耗的能量更少^[25]。 CCA 结果(图 5)显示,盐度也是调控土壤固氮菌 群落结构的最关键因素。这一结论可以被很多先前 的证据所支持,例如,Severin等发现,随着盐度的 升高,蓝细菌在滨海微生物垫(microbial mats)固 氮菌中的比重逐渐降低^[24];Yousuf等的研究显示, Alpha-变形菌和 Gamma-变形菌是滨海盐土中主要的 固氮菌类群;而 Alpha-变形菌和 Beta-变形菌则主要 出现在农田土壤(盐度极低)固氮菌类群中^[26]。

3.2 无机氮含量影响滨海盐土反硝化菌的丰度和群 落组成,而盐度控制反硝化过程功能基因的比值

反硝化菌驱动土壤 NO₃-和 NO₂-经过一系列还原 反应最终转化为 N₂,温室气体 N₂O 是反硝化过程的 副产物之一。nirS和 nirK 基因编码的亚硝酸盐还原 酶是反硝化过程的关键酶, nosZ 基因编码的氧化亚 氮还原酶则负责 N₂ 的产生。本研究发现, 莱州湾南 岸和黄河口滨海盐土中反硝化菌以 nirK 基因型占主 导(图3),这与我们之前在莱州湾潮间带沉积物中 的研究结果一致[27]。Li 等在黄河口沉积物中也发现 了类似的结果[28]。然而,也有很多潮间带或河口沉 积物中 nirS 型反硝化菌占优势,例如旧金山湾河口 区^[29]和大亚湾^[30]。nirS和nirK型反硝化菌的环境偏 好及其决定因素至今仍未有定论,溶解氧、盐度、 氧化还原电位、有机质含量和质量等均会影响二者 的分布^[5]。在本研究中, nirK、nirS 和 nosZ 基因拷 贝数在不同盐度间均无显著差异(图3),说明在这 些滨海盐土中,盐度并不是决定反硝化菌丰度的关 键因素。nirK 基因拷贝数与土壤 NH4+和 TN 显著正相关 (表 5)。 NO_{3}^{-} (源于 NH_{4}^{+} 氧化)是反硝化过程的 底物和电子受体,在这些贫瘠的盐土中,氮营养过 低可能制约了反硝化菌的生长。另外, nirK 基因拷 贝数与土壤 pH 显著负相关(表 5)。在河北吴桥的 碱土 (pH 范围 8.3~8.5) 实验基地中, 也发现了 nirK 基因拷贝数随土壤 pH 升高而降低的趋势[31]。纯 培养试验证实, nirK型反硝化菌活性的最佳 pH 在 6.5 左右^[4]。然而与我们结果不同的是, Wang 等发现 红树林沉积物中的 nosZ 基因拷贝数在中盐条件最高, 高盐条件最低[10]。分析可能的原因是,高盐明显降

低了红树林沉积物有机质的可利用性,使完全反硝 化过程(即 NO₃-或 NO₂-还原到 N₂)因电子供体不

足而无法进行^[32],从而影响 nosZ 型反硝化菌的丰度;

而本研究中的滨海盐土有机质含量较低,盐度对有 机质可利用性的影响不明显,故而对 nosZ 基因型反 硝化菌的丰度影响也不显著。

通过 T-RFLP 分析,我们发现反硝化菌功能基 因的 T-RF 数在各样品中差异较大,但在各盐度间却 差异不明显(表3),说明盐度对反硝化菌多样性的 影响不大或者盐度与其他因素协同影响反硝化菌的 多样性。值得一提的是,由于 T-RFLP 技术的分辨 率有限,可能造成对群落多样性的低估,进而影响 我们对盐度影响反硝化菌多样性的研判。因此,在 后续的研究中, 高通量测序、宏基因组分析等分辨 率更高的技术将被应用来验证我们的结论。相反, 土壤 TOC 和 NO, 水平与反硝化菌多样性之间存在显 著负相关(表 5)。CCA结果(图 5)也显示,土 壤无机氮含量是调控 nirK 和 nirS 基因群落结构的主 要因子。这可能符合"资源竞争排斥"假说[33-35]。"资 源竞争排斥"原理是不同物种在对同一种短缺资源的 竞争中, 使一个物种在竞争中被排斥或被取代, 即 完全的竞争者不能共存。反硝化菌利用碳源作为电 子供体,NO3⁻和NO5⁻作为电子受体完成呼吸作用以 获得能量。在有机碳或 NO,⁻和 NO₂-限制的生态系统 中,各种反硝化菌通过竞争权衡(trade off)实现资 源利用方式分化,达到对限制性资源的优化利用, 从而维持生态系统较高的物种多样性。

在完全反硝化过程中,NO₃⁻或 NO₂-最终被完全 转化为 N₂,然而许多反硝化类群缺乏 nosZ 基因,其 反硝化终产物为 N₂O^[36],因此(*nirS* + *nirK*)/*nosZ* 基因拷贝数比值经常作为反硝化过程产物 N₂O/N₂ 的 指征^[32]。在本研究中,该比值随盐度升高而显著升 高(图 3),说明盐度增加可能促进土壤反硝化过 程 N₂O 的排放。N₂O 排放增加会进一步加剧气候变 暖和海平面上升,从而更加剧滨海土壤盐渍化,形 成恶性循环。该结果支持了前人^[1]的结论,即 N₂O 的累积排放量随土壤盐度的升高而升高。需要注意 的是,高盐区(*nirS* + *nirK*)/*nosZ*比值反而比中盐 区略微下降(图 3)。根据 Li等^[37]的报道,在富含 NH₄⁺土壤中,盐度从 0.25 dS/m 增加到 6.17 dS/m, N₂O 的释放量先升高后降低,这说明土壤 N₂O 释放 过程对盐度升高的正反馈是局限在一定盐度范围的。

4 结论

(1) 莱州湾南岸和黄河口自然盐度梯度滨海盐 土的固氮菌丰度受盐度抑制明显,且其群落结构在 不同的盐度间差异显著。

(2)该区域盐土反硝化菌主要以 nirK 基因型 占主导, nirK、nirS、nosZ 三种基因型反硝化菌的丰 度受盐度影响不显著,但(nirS + nirK)/nosZ 比值 随盐度升高而显著升高。

(3)土壤盐度对反硝化微生物的群落结构和多 样性影响不显著,土壤无机盐氮营养水平是影响反 硝化菌群落的关键因子。

综上,海水侵灌导致的土壤盐渍化会显著影响 土壤的固氮过程,从而影响土壤肥力;而且,盐渍 化面积的扩大可能导致滨海区域反硝化过程 N₂O 的 释放量增加,进而影响全球气候。

参考文献:

- [1] 范晓梅,刘高焕,唐志鹏,等.黄河三角洲土壤盐渍化影响因素分析
 [J].水土保持学报,2010,24(1):139-144.
- [2] 李红强,姚荣江,杨劲松,等.盐渍化对农田氮素转化过程的影响机制和增效调控途径[J].应用生态学报,2020,31(11):3915-3924.
- [3] 陶健宇,杨劲松,姚荣江,等.河套灌区土壤盐分对化肥氮素转化过程的影响研究[J].土壤,2020,52(4):802-810.
- [4] 周煜琦,张照婧,位光山,等.全球变化下海岸带微生物生态研究进展[J]. 微生物学报, 2021, 61(6): 1743 1760.
- [5] Mavi M S, Marschner P. Salinity affects the response of soil microbial activity and biomass to addition of carbon and nitrogen[J]. Soil Research, 2013, 51(1): 68 – 75.
- [6] 沈菊培, 贺纪正. 微生物介导的碳氮循环过程对全球气候变化的响应[J]. 生态学报, 2011, 31(11): 2957 2967.
- [7] Herbert E R, Boon P, Burgin A J, et al. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands[J]. Ecosphere, 2015, 6(10): 206.
- [8] Midgley G F. Biodiversity and ecosystem function[J]. Science, 2012, 335(6065): 174 – 175.
- [9] Moisander P H, Morrison A E, Ward B B, et al. Spatial-temporal variability in diazotroph assemblages in Chesapeake Bay using an oligonucleotide *nifH* microarray[J]. Environmental Microbiology, 2007, 9(7): 1823 – 1835.
- [10] Wang H T, Gilbert J A, Zhu Y G, et al. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment[J]. Science of the Total Environment, 2018, 631-632: 1342 – 1349.
- [11] Franklin R B, Morrissey E M, Morina J C. Changes in abundance and community structure of nitrate-reducing bacteria along a salinity gradient in tidal wetlands[J]. Pedobiologia, 2017, 60: 21 – 26.
- Zhang K P, Shi Y, Cui X P, et al. Salinity is a key determinant for soil microbial communities in a desert ecosystem[J]. Msystems, 2019, 4(1): e00225 - 18.

- [13] 宋延静,张晓黎,付 娆,等. 滨海盐渍化土壤中氨氧化微生物丰度 和多样性特征[J]. 土壤, 2022, 54(6): 1157-1164.
- [14] 鲍士旦. 土壤农化分析(第三版) [M]. 北京: 中国农业出版社, 2000: 22-180.
- [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社,
 2000: 85-88.
- [16] Poly F, Monrozier L J, Bally R. Improvement in the RFLP procedure for studying the diversity of *nifH* genes in communities of nitrogen fixers in soil[J]. Research in Microbiology, 2001, 152(1): 95 – 103.
- [17] Hallin S, Lindgren P E. PCR detection of genes encoding nitrite reductase in denitrifying bacteria[J]. Applied and Environmental Microbiology, 1999, 65(4): 1652 – 1657.
- [18] Melero S, Pérez-de-Mora A, Murillo J M, et al. Denitrification in a vertisol under long-term tillage and no-tillage management in dryland agricultural systems: key genes and potential rates[J]. Applied Soil Ecology, 2011, 47(3): 221 – 225.
- [19] Rosch C, Mergel A, Bothe H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil[J]. Applied and Environmental Microbiology, 2002, 68(8): 3818 – 3829.
- [20] 李二焕, 沈 俊, 鞠 靖, 等. 苏北滨海盐土区河流入海口土壤盐分 及养分分布特征[J]. 中国水土保持科学, 2016, 14(1): 79-88.
- [21] 阳 洁, 江 院, 王晓甜, 等. 几株高效溶磷解钾药用稻内生固氮菌的筛选与鉴定[J]. 农业生物技术学报, 2016, 24(2): 186-195.
- [22] Hou L J, Wang R, Yin G Y, et al. Nitrogen fixation in the intertidal sediments of the Yangtze Estuary: occurrence and environmental implications[J]. Journal of Geophysical Research:Biogeosciences, 2018, 123(3): 936 – 944.
- [23] 孙秀茹. 崇明东滩湿地土壤生物固氮速率沿潮滩水淹梯度分布特征[D]. 上海: 华东师范大学, 2018: 44-46.
- [24] Severin I, Confurius-Guns V, Stal L J. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats[J]. Archives of microbiology, 2012, 194(6): 483 – 491.
- [25] Hu J L, Jin V L, Konkel J Y M, et al. Soil health management enhances microbial nitrogen cycling capacity and activity[J]. mSphere, 2021, 6(1): e01237 – 20.
- [26] Yousuf B, Kumar R, Mishra A, et al. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach[J]. FEMS Microbiology Letters, 2014, 360(2): 117 – 125.
- [27] Zhang X L, Agogué H, Dupuy C, et al. Relative abundance of ammonia oxidizers, denitrifiers, and anammox bacteria in sediments of hyper-nutrified estuarine tidal flats and in relation to environmental conditions[J]. CLEAN - Soil, Air, Water, 2014, 42(6): 815 – 823.
- [28] Li F G, Li M C, Shi W C, et al. Distinct distribution patterns of proteobacterial *nirK*- and *nirS*-type denitrifiers in the Yellow River

estuary, China[J]. Canadian Journal of Microbiology, 2017, 63(8): 708 – 718.

- [29] Mosier A C, Francis C A. Denitrifier abundance and activity across the San Francisco Bay estuary[J]. Environmental Microbiology Reports, 2010, 2(5): 667 – 676.
- [30] Shi R J, Xu S M, Qi Z H, et al. Seasonal patterns and environmental drivers of *nir*S- and *nir*K-encoding denitrifiers in sediments of Daya Bay, China[J]. Oceanologia, 2019, 61(3): 308 – 320.
- [31] Yang Y D, Zhao J, Jiang Y, et al. Response of bacteria harboring *nirS* and *nirK* genes to different N fertilization rates in an alkaline northern Chinese soil[J]. European Journal of Soil Biology, 2017, 82: 1 – 9.
- [32] Wang R, Feng Q, Liao T T, et al. Effects of nitrate concentration on the denitrification potential of a calcic cambisol and its fractions of N₂, N₂O and NO[J]. Plant and Soil, 2013, 363(1/2): 175 – 189.

- [33] Tilman D. Resource Competition and Community Structure[M]. Princeton: Princeton University Press, 1982.
- [34] Hammarlund S P, Chacón J M, Harcombe W R. A shared limiting resource leads to competitive exclusion in a cross - feeding system[J]. Environmental Microbiology, 2019, 21(2): 1 – 39.
- [35] Tilman, D. Resources: agraphical-mechanistic approach to competition ad predation[J]. American Naturalist, 1980, 116: 362 – 393.
- [36] Philippot L, Andert J, Jones C M, et al. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N₂O emissions from soil[J]. Global Change Biology, 2011, 17(3): 1497 – 1504.
- [37] Li Y W, Xu J Z, Liu B Y, et al. Enhanced N₂O production induced by soil salinity at a specific range[J]. International Journal of Environmental Research and Public Health, 2020, 17(14): 5169.

Distribution Patterns of Abundance and Community Composition of Nitrogen-fixing and Denitrifying Bacteria along the Salinity Gradient in Coastal Soils

SONG Yan-jing¹, MA Lan^{1*}, ZHANG Xiao-li², WANG Jie¹, SHAN Yan¹, LI Jun-lin¹

(1. Sericultural Research Institute of Shandong Province, Yantai 264002, China; 2. Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China)

Abstract: [Objective] To explore the influence of soil salinization on nitrogen transformation, the distribution patterns of nitrogen-fixing and denitrifying bacteria along a natural salinity gradient in coastal soils were analyzed in this study. [Method] The qPCR and terminal restriction fragment length polymorphism (T-RFLP) techniques were used to study the distributions of community abundance and composition of nitrogen-fixing (*nifH* gene) and denitrifying bacteria (*nirS*, *nirK* and *nosZ* genes) along the salinity gradient (0.64% ~ 5.18%) in saline soils of the southern coast of Laizhou Bay and the estuary of the Yellow River. According to the range of soil salinity, the samples were divided into three gradients: low salinity $(0.64\% \sim 0.76\%)$, medium salinity $(1.25\% \sim 2.39\%)$, and high salinity (3.49%) $\sim 5.18\%$). [Result] Nitrogen-fixing bacteria's abundance in the low salinity samples was significantly higher than those in the medium and high salinity ($P \le 0.05$). Spearman's correlation showed that the copy number of *nifH* gene was significantly positively correlated with soil NO₃⁻ concentration (P < 0.05), while Shannon index was significantly positively related to soil mean grain size (d0.5) (P < 0.05). 0.05). The canonical correspondence analysis (CCA) showed that *nifH* gene community structure was significantly controlled by salinity (P = 0.04). NirK genotype dominated in denitrifying bacteria in the saline soils. Salinity had no significant effect on the copy numbers of nirK, nirS and nosZ genes, but the (nirK + nirS)/nosZ ratio significantly increased with the increasing salinity. Inorganic nitrogen was a key environmental factor affecting the community structure of denitrifying bacteria. [Conclusion] In summary, degree of soil salinization in coastal zones significantly affects the abundance and community composition of soil nitrogen-fixing bacteria and the ratios of functional genes in the denitrification, which may affect soil nitrogen transformation processes and N₂O emission, and further influence global climate.

Key words: Coastal saline soil; Nitrogen-fixing bacteria; Denitrifying bacteria; Salinity gradient; Environmental response

[责任编辑:刘轶飞]