留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用环刀法快速原位测定土壤蒸发量

刘萌 王善举 樊军 付威 杜梦鸽

刘 萌, 王善举, 樊 军, 付 威, 杜梦鸽. 利用环刀法快速原位测定土壤蒸发量[J]. 土壤通报, 2021, 52(1): 55 − 61 doi: 10.19336/j.cnki.trtb.2020031001
引用本文: 刘 萌, 王善举, 樊 军, 付 威, 杜梦鸽. 利用环刀法快速原位测定土壤蒸发量[J]. 土壤通报, 2021, 52(1): 55 − 61 doi: 10.19336/j.cnki.trtb.2020031001
LIU Meng, WANG Shan-ju, FAN Jun, FU Wei, DU Meng-ge. Rapid In-situ Determination of Soil Evaporation with Cutting Ring Method[J]. Chinese Journal of Soil Science, 2021, 52(1): 55 − 61 doi: 10.19336/j.cnki.trtb.2020031001
Citation: LIU Meng, WANG Shan-ju, FAN Jun, FU Wei, DU Meng-ge. Rapid In-situ Determination of Soil Evaporation with Cutting Ring Method[J]. Chinese Journal of Soil Science, 2021, 52(1): 55 − 61 doi: 10.19336/j.cnki.trtb.2020031001

利用环刀法快速原位测定土壤蒸发量

doi: 10.19336/j.cnki.trtb.2020031001
基金项目: 国家自然科学基金面上项目(41977016)资助
详细信息
    作者简介:

    刘萌:刘 萌(1995−),男,山东省泰安市人,硕士研究生,主要从事土壤物理方面研究。E-mail: mengl2019@163.com

    通讯作者:

    E-mail: 870028013@qq.com

  • 中图分类号: S152.7+3

Rapid In-situ Determination of Soil Evaporation with Cutting Ring Method

  • 摘要: 原位准确快速测量土壤蒸发量,对研究干旱与半干旱地区土壤蒸发规律和水量平衡计算具有重要意义。本研究采用环刀法分别在两种质地土壤(风沙土和黄绵土)上原位测量土壤蒸发量,并与传统微型蒸发器法测定结果进行分析对比。结果表明:在风沙土上环刀法表层(0 ~ 5 cm)土壤日平均蒸发量为微型蒸发器法蒸发量的81.68%,而在黄绵土上仅占60.71%。在风沙土上环刀法四层累加值(0 ~ 20 cm)与微型蒸发器法测定结果极显著相关(P < 0.01,R2 = 0.52),RMSE为0.84,在连续无降水事件发生时,二者测定结果接近。在黄绵土上环刀法(0 ~ 20 cm)与微型蒸发器法测定结果极显著相关(P < 0.01,R2 = 0.59),RMSE为1.07,在连续无降水事件发生时,二者测量结果差异明显,但降雨强度较小的事件发生后,二者测量结果一致。因此,环刀法可以用于准确快速原位测定土壤蒸发量,但降水事件会对环刀测量土壤蒸发量结果产生显著影响。
  • 图  1  微型蒸发器布设及环刀法

    Figure  1.  Micro-lysimeter layout and ring-cutting method

    图  2  试验期内降雨、日平均温度(a)和土壤蒸发量(b)的连续动态变化

    Figure  2.  Dynamics of rainfall and daily mean temperature (a) and soil evaporation (b) with time during the monitoring period

    图  3  两种方法在不同土壤质地(a风沙土,b黄绵土)的蒸发量对比

    Figure  3.  Comparison of evaporation of different soil textures by using two methods (a, Aeolian soil; b, Loessal soil)

    图  4  两种方法在不同土壤质地(a风沙土,b黄绵土)的相关性

    Figure  4.  Correlation of the evaporation results between two methods in different soil textures (a, Aeolian soil; b Loessal soil)

    图  5  0 ~ 5 cm环刀法蒸发量与微型蒸发器在不同土壤质地(a风沙土,b黄绵土)的对比

    Figure  5.  Comparison of soil evaporation at 0-5 cm depth between cutting-ring method and micro-lysimeter method in different soil texture (a, Aeolian soil; b, Loessial soil)

    图  6  0 ~ 5 cm环刀法蒸发量与微型蒸发器在不同土壤质地(a风沙土,b黄绵土)的相关性

    Figure  6.  Correlation between the soil evaporation at 0-5 cm depth between the cutting-ring method and micro-lysimeter method in different soil texture (a Aeolian soil, b Loessial soil)

    表  1  研究区土壤的部分物理化学性质

    Table  1.   Some physical and chemical properties of soil in the study area

    土壤类型
    Soil type
    土层
    Soil layer
    (cm)
    容重
    Bulk Density
    (g cm−3)
    总孔隙度
    Total Porosity
    (%)
    砂粒
    Sand
    (%)
    粉粒
    Silt
    (%)
    黏粒
    Clay
    (%)
    有机质
    Organic matter
    (g kg−1
    风沙土0 ~ 51.6139.2584.6910.784.532.41
    5 ~ 101.6438.1180.9313.485.592.49
    10 ~ 151.6736.9884.0911.204.712.15
    15 ~ 201.6736.9885.7810.224.002.15
    黄绵土0 ~ 51.3648.6854.6437.677.694.41
    5 ~ 101.4246.4253.6038.777.632.83
    10 ~ 151.4943.7752.2540.227.531.39
    15 ~ 201.5143.0251.0341.207.771.29
    下载: 导出CSV
  • [1] Plauborg F. Evaporation from bare soil in a temperate humid climate-measurement using micro-lysimeters and time domain reflectometry[J]. Agricultural and Forest Meteorology, 1995, 76: 1 − 17. doi: 10.1016/0168-1923(94)02215-6
    [2] 牛 勇, 刘洪禄, 吴文勇, 等. 基于大型称重式蒸渗仪的日光温室黄瓜蒸腾规律研究[J]. 农业工程学报, 2011, 27(1): 52 − 56. doi: 10.3969/j.issn.1002-6819.2011.01.008
    [3] 米美霞, 樊 军, 邵明安. 利用热脉冲技术研究石子覆盖对土壤内部蒸发的影响[J]. 土壤学报, 2013, 50(1): 75 − 82. doi: 10.11766/trxb201202060024
    [4] 屈艳萍, 康绍忠, 王素芬, 等. 液流-株间微型蒸渗仪法测定新疆杨蒸发蒸腾量适用性分析[J]. 干旱地区农业研究, 2014, 32(3): 88 − 94. doi: 10.7606/j.issn.1000-7601.2014.03.015
    [5] 汪增涛, 孙西欢, 郭向红, 等. 土壤蒸发研究进展[J]. 山西水利, 2007, (1): 76 − 78. doi: 10.3969/j.issn.1004-7042.2007.01.041
    [6] Allen S J. Measurement and estimation of evaporation from soil under sparse barley crops in northern Syria[J]. Agricultural and Forest Meteorology, 1990, 49(4): 291 − 309. doi: 10.1016/0168-1923(90)90003-O
    [7] Matthias A D, Salehi R, Warrick A W. Bare soil evaporation near a surface point source emitter[J]. Agricultural Water Management, 1986, 11(3): 257 − 277. doi: 10.1016/0378-3774(86)90043-0
    [8] Wallker G K. Measurement of evaporation from soil beneathcrop canopies[J]. Canadian Journal of Soil Science, 1983, 63(1): 137 − 141. doi: 10.4141/cjss83-013
    [9] 李王成, 王 为, 冯绍元, 等. 不同类型微型蒸发器测定土壤蒸发的田间试验研究[J]. 农业工程学报, 2007, 23(10): 6 − 13. doi: 10.3321/j.issn:1002-6819.2007.10.002
    [10] 杨宪龙, 魏孝荣, 邵明安. 不同规格微型蒸渗仪测定土壤蒸发的试验研究[J]. 土壤通报, 2017, 48(2): 343 − 350. doi: 10.19336/j.cnki.trtb.2017.02.13
    [11] 马富亮, 朱小立, 符素华, 等. 封底与不封底微型蒸发器测定东北典型黑土区土壤蒸发量差异性研究[J]. 灌溉排水学报, 2016, 35(12): 7 − 11. doi: 10.13522/j.cnki.ggps.2016.12.002
    [12] Evett S R, Warrick A W, Matthias A D. Wall material and capping effects on microlysimeter temperatures and evaporation[J]. Soil Science Society of America Journal, 1995, 59(2): 329 − 336. doi: 10.2136/sssaj1995.03615995005900020009x
    [13] Boast C W, Robertson T M. A micro-lysimeter method for determining evaporation from bare soil-description and laboratory evaluation[J]. Soil Science Society of America Journal, 1982, 46(4): 689 − 696. doi: 10.2136/sssaj1982.03615995004600040005x
    [14] Facchi A, Masseroni D, Miniotti E F. Self-made microlysimeters to measure soil evaporation: a test on aerobic rice in northern Italy[J]. Paddy and Water Environment, 2017, 15(3): 669 − 680. doi: 10.1007/s10333-016-0566-7
    [15] 高晓飞, 史海珍, 杨 洁, 等. 微型蒸发器长度影响土壤蒸发测量值的试验研究[J]. 灌溉排水学报, 2010, 29(4): 11 − 15. doi: CNKI:SUN:GGPS.0.2010-04-003
    [16] 孙宏勇, 刘昌明, 张永强, 等. 微型土壤蒸发器测定土面蒸发的实验研究[J]. 水利学报, 2004, (8): 114 − 118. doi: 10.3321/j.issn:0559-9350.2004.08.021
    [17] Kidron G J, Kronenfeld R. Assessing the effect of micro-lysimeters on NRWI: Do micro-lysimeters adequately represent the water input of natural soil?[J]. Journal of Hydrology, 2017, 548: 382 − 390. doi: 10.1016/j.jhydrol.2017.03.005
    [18] 高晓飞, 王晓岚. 微型蒸发器口径影响土壤蒸发测量值的试验研究[J]. 灌溉排水学报, 2011, 30(1): 1 − 4. doi: CNKI:SUN:GGPS.0.2011-01-000
    [19] 刘春伟, 邱让建, 孙亚卿, 等. 不同材料和尺寸微型蒸渗仪测定土壤蒸发量[J]. 中国农村水利水电, 2018, (6): 1 − 5. doi: 10.3969/j.issn.1007-2284.2018.06.001
    [20] Daamen C C, Simmonds L P, Wallace J S. Use of micro-lysimeters to measure evaporation from sandy soils[J]. Agricultural and Forest Meteorology, 1993, 65: 159 − 173. doi: 10.1016/0168-1923(93)90002-Y
    [21] Voortman B R, Bosveld F C, Bartholomeus R P, et al. Spatial extrapolation of lysimeter results using thermal infrared imaging[J]. Journal of Hydrology, 2016, 543: 230 − 241. doi: 10.1016/j.jhydrol.2016.09.064
    [22] 张保华, 陶宝先, 曹建荣, 等. 黄河下游不同质地潮土孔隙形态特征[J]. 中国土壤与肥料, 2019, (3): 8 − 14. doi: 10.11838/sfsc.1673-6257.18274
    [23] 张丽萍, 陈儒章, 邬燕虹, 等. 风化花岗岩坡地土壤剖面大孔隙特性的空间分布[J]. 土壤学报, 2018, 55(3): 620 − 632. doi: 10.11766/trxb201709070266
    [24] 赵 丹, 李 毅, 冯 浩. 砂石条形覆盖下土壤水分蒸发动态研究[J]. 土壤学报, 2015, 52(5): 1058 − 1068. doi: 10.11766/trxb201411190580
    [25] 龙 桃, 熊黑钢, 李宝富, 等. 微型蒸发器测量精度的影响因素试验[J]. 农业工程学报, 2010, 26(5): 21 − 26. doi: 10.3969/j.issn.1002-6819.2010.05.004
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  517
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-10
  • 修回日期:  2020-10-02
  • 刊出日期:  2021-03-05

目录

    /

    返回文章
    返回