留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旅游干扰对太原万柏林生态园土壤团聚体稳定性及有机碳分布的影响

田云国

田云国. 旅游干扰对太原万柏林生态园土壤团聚体稳定性及有机碳分布的影响[J]. 土壤通报, 2021, 52(6): 1316 − 1322 doi: 10.19336/j.cnki.trtb.2020041501
引用本文: 田云国. 旅游干扰对太原万柏林生态园土壤团聚体稳定性及有机碳分布的影响[J]. 土壤通报, 2021, 52(6): 1316 − 1322 doi: 10.19336/j.cnki.trtb.2020041501
TIAN Yun-guo. Effects of Tourism Disturbance on Soil Aggregate Stability and Organic Carbon Content in Wanbailin Ecological Forestry Park of Taiyuan[J]. Chinese Journal of Soil Science, 2021, 52(6): 1316 − 1322 doi: 10.19336/j.cnki.trtb.2020041501
Citation: TIAN Yun-guo. Effects of Tourism Disturbance on Soil Aggregate Stability and Organic Carbon Content in Wanbailin Ecological Forestry Park of Taiyuan[J]. Chinese Journal of Soil Science, 2021, 52(6): 1316 − 1322 doi: 10.19336/j.cnki.trtb.2020041501

旅游干扰对太原万柏林生态园土壤团聚体稳定性及有机碳分布的影响

doi: 10.19336/j.cnki.trtb.2020041501
基金项目: 山西省教育科学“十三五”规划“1331工程”研究专项(ZX-18129)资助
详细信息
    作者简介:

    田云国(1979−),男,汉族,山西永济人,硕士,讲师,主要从事旅游资源开发及可持续发展研究。E-mail: sx20120715@126.com

  • 中图分类号: F592.7

Effects of Tourism Disturbance on Soil Aggregate Stability and Organic Carbon Content in Wanbailin Ecological Forestry Park of Taiyuan

  • 摘要: 以太原万柏林生态园为试验对象,研究了旅游干扰对土壤团聚体组成及有机碳分布的影响。结果表明,随着旅游干扰强度增强,景区土壤< 1 mm粒级团聚体数量逐渐升高,而> 1 mm粒级团聚体数量、水稳性团聚体平均质量直径(MWD)和平均几何直径(GMD)则均逐渐降低;土壤总有机碳含量和各粒级团聚体有机碳含量均随旅游干扰强度增强而逐渐降低,且0 ~ 20 cm土层、> 1.0 mm粒级团聚体降低幅度高于20 ~ 40 cm土层、< 0.5 mm粒级团聚体;随着旅游干扰强度的增加,>2 mm粒级团聚体对土壤有机碳的贡献率逐渐降低,而< 1 mm粒级团聚体贡献率逐渐升高。综上所述,旅游干扰会显著降低景区土壤团聚体稳定性和有机碳含量,破坏土壤质量,建议相关部门合理制定旅游环境容量、提高游客环保意识,减轻负面影响。
  • 图  1  不同旅游干扰下土壤团聚体稳定性指数MWDGMD

    CK,非干扰区;LD,轻度干扰区;MD,中度干扰区;SD,重度干扰区;图中不同小写字母表示不同土层间团聚体稳定性达到显著差异水平(P < 0.05);不同大写字母表示不同处理在相同土层间团聚体稳定性达到显著差异水平(P < 0.05)。下同。

    Figure  1.  Values of MWD and GMD of soil aggregates under different tourism disturbance intensity

    图  2  不同旅游干扰下土壤各粒径团聚体有机碳含量

    Figure  2.  Organic carbon content of different aggregate sizes under different tourism disturbance intensity

    图  3  不同旅游干扰强度下土壤各粒级团聚体对土壤有机碳含量的贡献率

    Figure  3.  Contribution rates of different aggregate sizes to soil organic carbon content under different tourism disturbance intensities

    表  1  不同旅游干扰强度下土壤团聚体分布特征(%)

    Table  1.   Distribution of different aggregates in soils under different tourism disturbance intensities

    土层
    Soil layer
    干扰强度
    Disturbance intensity
    土壤团聚体粒级
    Soil aggregate size
    > 5 mm2 ~ 5 mm1 ~ 2 mm0.5 ~ 1 mm0.25 ~ 0.5 mm< 0.25 mm
    0 ~ 20 cm 对照 CK 65.52 ± 2.25 Aa 20.02 ± 1.56 Ab 6.21 ± 0.11 Ac 4.15 ± 0.02 Ccd 3.02 ± 0.05 Cde 1.08 ± 0.03 Be
    轻度干扰 LD 58.37 ± 2.02 Ba 17.75 ± 1.03 Bb 6.48 ± 0.15 Ac 6.85 ± 0.02 Cc 6.65 ± 0.03 Cc 3.90 ± 0.02 Bd
    中度干扰 MD 43.65 ± 1.65 Ca 12.62 ± 1.22 Cb 6.24 ± 0.13 Ac 11.79 ± 0.06 Bb 13.85 ± 0.01 Bb 11.82 ± 0.02 Ab
    重度干扰 SD 35.22 ± 2.06 Da 8.83 ± 1.56 De 5.65 ± 0.06 Bf 16.75 ± 0.04 Ac 20.96 ± 0.02 Ab 12.59 ± 0.05 Ad
    20 ~ 40 cm 对照 CK 65.23 ± 2.13 Aa 21.15 ± 1.12 Ab 5.56 ± 0.23 Ac 3.88 ± 0.04 Ccd 3.06 ± 0.05 Dde 1.12 ± 0.02 Be
    轻度干扰 LD 61.05 ± 2.01 Aa 19.62 ± 0.93 Ab 5.25 ± 0.18 Ac 6.02 ± 0.01 Cc 6.78 ± 0.02 Cc 1.28 ± 0.04 Bd
    中度干扰 MD 48.75 ± 2.11 Ba 14.85 ± 0.85 Bb 5.13 ± 0.21 Ad 10.35 ± 0.03 Bc 13.52 ± 0.08 Bb 7.40 ± 0.08 Ad
    重度干扰 SD 40.06 ± 1.96 Ca 11.06 ± 0.91 Bd 5.21 ± 0.09 Ae 15.73 ± 0.03 Ac 20.11 ± 0.11 Ab 7.83 ± 0.06 Ae
      注:同行不同小写字母表示不同粒级团聚体含量达到显著差异水平(P < 0.05);同列不同大写字母表示不同处理在相同粒级团聚体含量达到显著差异水平(P < 0.05)。下同。
    下载: 导出CSV

    表  2  土壤团聚体组成与土壤结构稳定性及有机碳含量的相关性分析

    Table  2.   Correlation analysis of soil aggregate distribution with soil structure stability and organic carbon content

    项目
    Item
    土壤团聚体粒级
    Soil aggregate size
    5 mm2 ~ 5 mm1 ~ 2 mm0.5 ~ 1 mm0.25 ~ 0.5 mm< 0.25 mm
    平均重量直径(MWD 0.883** 0.656* 0.425 −0.552* −0.686* −0.875**
    几何平均直径(GMD 0.891** 0.635* 0.433 −0.535* −0.675* −0.868**
    有机碳(TOC) 0.921** 0.668* 0.412 −0.538* −0.669* −0.882**
      注:*表示差异显著(P < 0.05),**表示差异极显著(P < 0.01)。
    下载: 导出CSV
  • [1] Hartley W, Riby P, Waterson J. Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability[J]. Journal of Environmental Management, 2016, 181: 770 − 778. doi: 10.1016/j.jenvman.2016.07.023
    [2] Barreto R C, Madari B E, Maddock J E L, et al. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2 in the surface layer of a rhodic ferralsol in southern brazil[J]. Agriculture, Ecosystems & Environment, 2009, 132(4): 243 − 251.
    [3] 侯晓娜, 李 慧, 朱刘兵, 等. 生物炭与秸秆添加对砂姜黑土团聚体组成和有机碳分布的影响[J]. 中国农业科学, 2015, 48(4): 705 − 712. doi: 10.3864/j.issn.0578-1752.2015.04.08
    [4] 武 均, 蔡立群, 齐 鹏, 等. 不同耕作措施下旱作农田土壤团聚体中有机碳和全氮分布特征[J]. 中国生态农业学报, 2015, 23(3): 276 − 284.
    [5] 成艳红, 武 琳, 孙慧娟, 等. 稻草覆盖和香根草篱对红壤水稳性团聚体组成及有机碳含量的影响[J]. 生态学报, 2016, 36(12): 3518 − 3524.
    [6] 王 进, 刘子琦, 鲍恩俣, 等. 长期撂荒恢复土壤团聚体组成与有机碳分布关系[J]. 水土保持学报, 2019, 33(6): 249 − 256.
    [7] Zhou P, Liu G B, Hou X L. Fractal features of soil aggregate structure under different land use in the Hillygully region of Loess Plateau[J]. Science of Soil and Water Conservation, 2008, 6(2): 75 − 82.
    [8] 魏亚伟, 苏以荣, 陈香碧, 等. 人为干扰对喀斯特土壤团聚体及其有机碳稳定性的影响[J]. 应用生态学报, 2011, 22(4): 971 − 978.
    [9] 李 肖, 陈 晨, 林 杰, 等. 侵蚀强度对淮北土石山区土壤团聚体组成及稳定性的影响[J]. 水土保持研究, 2019, 26(4): 56 − 67.
    [10] 陈 憧, 杨建龙. 中国旅游业发展现状研究[J]. 价值工程, 2016, (6): 219 − 222.
    [11] 朱 芳, 白卓灵, 陈 耿, 等. 旅游活动对武当山风景区生态环境的影响[J]. 林业资源管理, 2015, 6(3): 89 − 95.
    [12] 陈 婷, 李国华, 王燕铭. 旅游活动对香山公园草地生态环境的影响[J]. 水土保持研究, 2015, 22(3): 280 − 285.
    [13] 王舒甜, 张金池, 郑丹扬, 等. 钟山风景区土壤环境对人为踩踏扰动的响应[J]. 林业科学, 2017, 53(8): 9 − 16. doi: 10.11707/j.1001-7488.20170802
    [14] 罗庆华, 童 芳, 陶水秀, 等. 旅游干扰对张家界大鲵生境及水质的影响[J]. 应用生态学报, 2019, 30(6): 2101 − 2108.
    [15] 刘小兰. 旅游干扰对九寨沟冷杉林下枯落物及其土壤水文功能的影响[J]. 水土保持研究, 2015, 22(2): 229 − 234.
    [16] 刘光荣. 旅游干扰对庐山风景区微生物多样性的影响[J]. 山东农业大学学报(自然科学版), 2015, 46(2): 274 − 279.
    [17] 叶协锋, 李志鹏, 于晓娜, 等. 培肥措施对烟田土壤团聚体及土壤碳库的影响[J]. 土壤通报, 2018, 49(2): 385 − 391.
    [18] LU R K. Soil agricultural chemical analysis methods[M]. Beijing: China Agricultural Science and Technology Press, 1999, 111-119.
    [19] 刘 杰, 马艳婷, 王宪玲, 等. 渭北旱塬土地利用方式对土壤团聚体稳定性及其有机碳的影响[J]. 环境科学, 2019, 40(7): 3361 − 3368.
    [20] 李鉴霖, 江长胜, 郝庆菊. 土地利用方式对缙云山土壤团聚体稳定性及其有机碳的影响[J]. 环境科学, 2014, 35(12): 4695 − 4704.
    [21] 安 艳, 姬 强, 赵世翔, 等. 生物质炭对果园土壤团聚体分布及保水性的影响[J]. 环境科学, 2016, 37(1): 293 − 300.
    [22] TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2): 141 − 163. doi: 10.1111/j.1365-2389.1982.tb01755.x
    [23] Franz C, Makeschin F, Wei H, et al. Sediments in urban river basins: Identification of sediments sources within the lago pránoa catchment, Brasilia DF, Brazil-using the fingerprint approach[J]. Science of the Total Environment, 2014, 466: 513 − 523.
    [24] 刘 秀, 司鹏飞, 张 哲, 等. 地膜覆盖对北方旱地土壤水稳性团聚体及有机碳分布的影响[J]. 生态学报, 2018, 38(21): 7870 − 7877.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  155
  • HTML全文浏览量:  95
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 修回日期:  2021-05-02
  • 刊出日期:  2021-12-08

目录

    /

    返回文章
    返回