留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大兴安岭南段不同生长衰退程度山杨林生态化学计量特征

王亚东 魏江生 周梅 刘艳琦 孙逸晨 赵晓娟 郭娇宇

王亚东, 魏江生, 周 梅, 刘艳琦, 孙逸晨, 赵晓娟, 郭娇宇. 大兴安岭南段不同生长衰退程度山杨林生态化学计量特征[J]. 土壤通报, 2021, 52(4): 854 − 864 doi: 10.19336/j.cnki.trtb.2020052701
引用本文: 王亚东, 魏江生, 周 梅, 刘艳琦, 孙逸晨, 赵晓娟, 郭娇宇. 大兴安岭南段不同生长衰退程度山杨林生态化学计量特征[J]. 土壤通报, 2021, 52(4): 854 − 864 doi: 10.19336/j.cnki.trtb.2020052701
WANG Ya-dong, WEI Jiang-sheng, ZHOU Mei, LIU Yan-qi, SUN Yi-chen, ZHAO Xiao-juan, GUO Jiao-yu. Ecological of Stoichiometric Characteristics of Populus davidiana forests with Different Growth and Decline Degrees in Southern Daxing'anling[J]. Chinese Journal of Soil Science, 2021, 52(4): 854 − 864 doi: 10.19336/j.cnki.trtb.2020052701
Citation: WANG Ya-dong, WEI Jiang-sheng, ZHOU Mei, LIU Yan-qi, SUN Yi-chen, ZHAO Xiao-juan, GUO Jiao-yu. Ecological of Stoichiometric Characteristics of Populus davidiana forests with Different Growth and Decline Degrees in Southern Daxing'anling[J]. Chinese Journal of Soil Science, 2021, 52(4): 854 − 864 doi: 10.19336/j.cnki.trtb.2020052701

大兴安岭南段不同生长衰退程度山杨林生态化学计量特征

doi: 10.19336/j.cnki.trtb.2020052701
基金项目: 内蒙古自治区科技计划项目(20120421)、国家自然科学基金项目(41530747)资助
详细信息
    作者简介:

    王亚东(1990−),男,汉族,内蒙古乌兰察布人,硕士,主要从事森林土壤研究。E-mail: wangyadong20080808@qq.com

    通讯作者:

    E-mail: weijiangsheng1969@163.com

  • 中图分类号: S714

Ecological of Stoichiometric Characteristics of Populus davidiana forests with Different Growth and Decline Degrees in Southern Daxing'anling

  • 摘要: 分析大兴安岭南段(半干旱区)赛罕乌拉地区天然山杨次生林的乔木-凋落物-土壤的C、N、P化学计量特,探讨当地出现山杨林的生长衰退现象与养分限制的相关性,以期为天然森林资源恢复重建提供理论依据。按照不同生长衰退程度山杨将其划分为健康生长和轻度、重度衰退生长的山杨林,测定乔木-凋落物-土壤的C、N、P含量,并分析山杨不同组分化学计量特征差异及生长衰退对化学计量特征的影响。结果表明:(1)研究区内土壤有机C、全N平均值含量均高于我国森林土壤平均水平,土壤全P平均值含量低于我国森林土壤平均水平;山杨重度生长衰退山杨根区土壤全N、全P含量显著低于正常生长山杨根区土壤。(2)山杨根C含量高于山杨其他器官,重度生长衰退山杨叶片C/N、C/P高于正常生长山杨,这可能与山杨生长受到N、P元素限制有关。(3)正常生长山杨的P重吸收率显高于重度生长衰退山杨,说明山杨通过对叶片P重吸收以适应其根区土壤P缺乏胁迫,提高山杨的抗旱能力。(4)山杨凋落叶C、N、P含量处于全球及我国多数陆地植物凋落叶C、N、P含量平均水平;山杨凋落叶的C/N比值明显高于养分N释放临界点,重度生长衰退山杨凋落叶的C/P明显高于P养分释放临界点,说明凋落叶N、P元素不易分解释放;这使得重度生长衰退山杨林地的凋落叶中N、P元素大量滞留而土壤中某些养分元素被消耗但得不到及时补充。研究区重度生长衰退山杨生长受到养分限制,与林中凋落叶分解缓慢、土壤中N、P元素主要以有机物形式存在有关。
  • 图  1  研究区地理位置图

    Figure  1.  Geographical location of the study area

    表  1  山杨研究样地信息

    Table  1.   Information of Populus davidianaplots

    序号
    Sequence number
    平均胸径
    Mean DBH
    (cm)
    平均树高
    Average tree height
    (m)
    林分密度
    Density
    (株 hm−2
    海拔
    Altitude
    (m)
    坡位
    Slope position
    土壤质地类型
    Soil type
    1 13.82 11.53 3300 1218.55 坡中 壤土
    2 13.82 9.68 2700 1218.55 坡中 壤土
    3 15.62 11.27 3000 1196.26 坡中 壤土
    4 11.16 9.54 2900 1170.94 坡中 壤土
    下载: 导出CSV

    表  2  山杨林植物-凋落叶-土壤C、N、P含量(g kg−1

    Table  2.   Contents of C,N and P in the system of Populus davidiana – leaf litter – soil

    项目
    Item
    对象
    Object
    生长正常
    Normal growth
    轻度生长衰退
    Mild degree of growth decline
    重度生长衰退
    Severe degree of growth decline
    平均值
    Mean
    C 454.55 ± 8.61 Ac 456.01 ± 9.84 Ab 460.21 ± 8.32 Ab 457.04 ± 8.94 c
    树干 468.86 ± 3.41 Ab 468.73 ± 3.82 Aa 468.58 ± 3.74 Aab 468.72 ± 3.53 b
    476.99 ± 6.59 Aa 477.80 ± 8.08 Aa 474.47 ± 5.12 Aa 476.35 ± 6.57 a
    凋落叶 439.5 ± 11.27 Ad 440.1 ± 10.46 Ac 441.0 ± 12.68 Ac 440.2 ± 11.00 d
    土壤 60.65 ± 7.20 Ae 58.54 ± 6.87 Ad 57.19 ± 6.70 Ad 58.74 ± 6.81 e
    N 16.94 ± 1.33 Aa 16.93 ± 1.56 Aa 14.50 ± 1.08 Ba 16.06 ± 1.75 a
    树干 1.14 ± 0.24 Ad 0.85 ± 0.32 Ad 0.80 ± 0.48 Bd 0.93 ± 0.39 d
    3.98 ± 0.54 Ac 4.06 ± 0.66 Ac 3.50 ± 0.48 Bc 3.84 ± 0.60 c
    凋落叶 10.01 ± 1.11 Ab 9.23 ± 0.84 Ab 9.74 ± 1.02 Bb 9.65 ± 1.01 b
    土壤 4.35 ± 0.56 Ac 4.02 ± 0.58 Ac 4.00 ± 0.25 Bc 4.12 ± 0.49 c
    P 1.35 ± 0.13 Aa 1.37 ± 0.09 Aa 1.14 ± 0.04 Ba 1.28 ± 0.14 a
    树干 0.24 ± 0.01 Ae 0.22 ± 0.02 Ae 0.16 ± 0.03 Be 0.21 ± 0.04 d
    0.60 ± 0.08 Ac 0.52 ± 0.04 Ac 0.29 ± 0.05 Bd 0.35 ± 0.20 c
    凋落叶 0.98 ± 0.10 Ab 0.86 ± 0.08 Ab 0.85 ± 0.12 Bb 0.90 ± 0.12 b
    土壤 0.44 ± 0.04 Ad 0.36 ± 0.11 Ad 0.43 ± 0.10 Bc 0.41 ± 0.08 c
      注:同列不同大写字母表示组间差异显著(P < 0.05);同列不同小写字母表示组内差异显著(P < 0.05)。
    下载: 导出CSV

    表  3  山杨林植物-凋落叶-土壤C、N、P、C化学计量比

    Table  3.   Stoichiometric ratio of C,N and P in the system of Populus davidiana plant – leaf litter – soil

    项目
    Item
    对象
    Object
    生长正常
    Normal growth
    轻度生长衰退
    Mild degree of growth decline
    重度生长衰退
    Severe degree of growth decline
    平均值
    Mean
    C/N 26.98 ± 2.03 Bc 27.14 ± 2.69 Bc 31.27 ± 1.95 Ab 28.46 ± 2.96 b
    树干 426.61 ± 82.21 Ba 617.26 ± 208.90 Ba 803.02 ± 282.46 Aa 615.57 ± 255.77 a
    121.74 ± 15.92 Bb 120.16 ± 17.44 Bb 137.82 ± 19.30 Ab 126.97 ± 18.91 b
    凋落叶 44.31 ± 4.16 Bc 48.05 ± 4.38 Bbc 45.80 ± 5.53 Ab 46.06 ± 4.77 b
    土壤 14.01 ± 0.93 Bc 14.64 ± 0.82 Bc 14.56 ± 1.24 Ab 14.40 ± 1.01 b
    C/P 345.54 ± 29.30 Bc 334.70 ± 26.30 Bc 403.57 ± 11.81 Ab 363.42 ± 38.68 c
    树干 1932.33 ± 84.25 Ba 2161.37 ± 180.47 Ba 2955.79 ± 513.35 Aa 2371.47 ± 552.31 a
    816.30 ± 121.20 Bb 925.51 ± 80.38 Bb 1665.46 ± 263.84 Ab 1154.68 ± 426.35 b
    凋落叶 453.06 ± 39.02 Bc 364.60 ± 37.03 Bbc 542.84 ± 66.11 Ab 450.06 ± 86.82 c
    土壤 139.69 ± 26.22 Bc 171.37 ± 33.76 Bc 136.87 ± 24.80 Ab 148.03 ± 31.16 c
    N/P 12.62 ± 1.56 Ba 12.39 ± 1.04 BAa 12.72 ± 1.04 Aa 12.58 ± 1.19 a
    树干 4.70 ± 1.04 Bd 3.51 ± 1.17 BAd 4.25 ± 2.00 Ab 4.20 ± 1.50 c
    6.54 ± 1.35 Bc 7.87 ± 1.43 BAc 12.30 ± 2.62 Aa 9.12 ± 3.16 b
    凋落叶 10.25 ± 1.43 Bb 10.72 ± 0.81 BAb 11.75 ± 3.03 Aa 10.87 ± 1.96 ba
    土壤 10.03 ± 2.05 Bb 11.60 ± 1.99 BAba 9.23 ± 1.71 Aa 10.24 ± 2.09 ba
      注:同列不同大写字母表示组间差异显著(P < 0.05);同列不同小写字母表示组内差异显著(P < 0.05)。
    下载: 导出CSV

    表  4  不同生长衰退程度山杨N、P养分重吸收率

    Table  4.   Reabsorption rate of N and P by Populus davidiana at different degrees of growth decline

    生长衰退程度
    Degree of growth decline
    重吸收率
    Resorption efficiency
    T检验
    T-test
    N(%)P(%)T值 T valued.f.Sig.
    生长正常 0.53 ± 0.11 Aa 0.41 ± 0.16 Aa −1.99 16 0.06
    轻度生长衰退 0.59 ± 0.07 Aa 0.58 ± 0.08 Aa −0.35 16 0.73
    重度生长衰退 0.50 ± 0.13 Aa 0.36 ± 0.12 Ab −2.22 16 0.04
    平均值 0.54 ± 0.11 a 0.45 ± 0.15 b −3.15 16 0.01
      注:不同大写字母表示不同生长衰退程度山杨间N或P重吸收率差异显著,不同小写字母表示同一生长衰退程度N与P重吸收率的差异显著(P < 0.05)。T值表示T检验值衰退程度山杨凋落叶N、P养分重吸收率具有显著差异(P < 0.05)。
    下载: 导出CSV

    表  5  山杨林植物-凋落叶-土壤C、N、P含量间相关分析

    Table  5.   Correlation analysis among contents of C,N and P in the system of Populus davidiana – leaf litter – soil

    组分
    Component
    土壤C
    Soil C
    土壤N
    Soil N
    土壤P
    Soil P
    凋落叶C
    Litter C
    凋落叶N
    Litter N
    凋落叶P
    Litter P
    叶C 0.22 0.23 0.41* 0.18 0.26 −0.25
    叶N 0.29 0.24 0.08 0.22 −0.26 0.38*
    叶P 0.15 0.16 −0.05 −0.07 −0.11 0.33
    干C 0.15 0.19 0.29 0.05 0.33 0.18
    干N 0.56** 0.33 0.25 0.09 0.21 −0.11
    干P 0.20 0.26 −0.05 0.22 −0.22 0.52**
    根C 0.35 0.21 0.50** −0.09 0.25 0.15
    根N 0.48* 0.45* 0.27 0.06 0.31 0.09
    根P 0.16 0.11 −0.05 0.20 −0.31 0.45*
    凋落叶C −0.15 −0.06 0.14 1.00 −0.33 0.30
    凋落叶N 0.42* 0.48* 0.20 1.00 −0.12
    凋落叶P −0.06 0.02 −0.01 1.00
      注:*.表示显著相关(P < 0.05);**表示极显著相关(P < 0.01)。
    下载: 导出CSV

    表  6  山杨林植物-凋落物-土壤C、N、P化学计量比间相关分析

    Table  6.   Correlation analysis among stoichiometric ratio of C,N and P in the system of Populus davidiana – leaf litter – soil

    组分
    Component
    土壤C/N
    Soil C/N
    土壤C/P
    Soil C/P
    土壤N/P
    Soil N/P
    凋落叶C/N
    Litter C/N
    凋落叶N/P
    Litter N/P
    叶C/N 0.22 0.23 0.41* 0.18 0.26
    叶C/P 0.29 0.24 0.08 0.22 −0.26
    叶N/P 0.15 0.16 −0.05 −0.07 −0.11
    干C/N 0.15 0.19 0.29 0.05 0.33
    干C/P 0.56** 0.33 0.25 0.09 0.21
    干N/P 0.20 0.26 −0.05 0.22 −0.22
    根C/N 0.35 0.21 0.50** −0.09 0.25
    根C/P 0.48* 0.45* 0.27 0.06 0.31
    根N/P 0.16 0.11 −0.05 0.20 −0.31
    凋落叶C/N −0.15 −0.06 0.14 1.00 −0.33
    凋落叶C/P 0.42* 0.48* 0.20 1.00
    凋落叶N/P −0.06 0.02 −0.01
      注:*.表示显著相关(P < 0.05);**表示极显著相关(P < 0.01)。
    下载: 导出CSV
  • [1] McDowll NG, Allen CD, Marshall L. Growth, carbon-isotope discrimination and drought associated mortality across a pinus ponderosa elevational transect[J]. Global Change Biology, 2010, 16: 399 − 415. doi: 10.1111/j.1365-2486.2009.01994.x
    [2] 王洪峰, 何波祥, 曾令海, 等. 中国热带次生林分布、类型与面积研究[J]. 广东林业科技, 2008, (2): 65 − 73.
    [3] Kurz WA, Dymond CC, Stinson G, et al. Mountain pine beetle and forest carbon feedback to climate change[J]. Nature, 2008, 452: 987 − 990. doi: 10.1038/nature06777
    [4] Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660 − 684. doi: 10.1016/j.foreco.2009.09.001
    [5] Allen C D, Breshears D D. Climate-induced forest dieback as an emergent global phenomenon[J]. Eos Transactions American Geophysical Union, 2007, 88(47): 504 − 505.
    [6] Frelich L E, Reich P B. Will environmental changes reinforce the impact of global warming on the prairie-forest border of central North America[J]. Frontiers in Ecology and the Environment, 2010, 8(7): 371 − 378. doi: 10.1890/080191
    [7] Liu H Y, Williams A P, Allen C D, et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia[J]. Global Change Biology, 2013, 19(8): 2500 − 2510. doi: 10.1111/gcb.12217
    [8] Liu H Y, Yin Y. Response of forest distribution to past climate change: An insight into future predictions[J]. Chinese Science Bulletin, 2013, 58(35): 4426 − 4436. doi: 10.1007/s11434-013-6032-7
    [9] Lucht W, Schaphoff S, Erbrecht T, et al. Terrestrial vegetation redistribution and carbon balance under climate change[J]. Carbon Balance and Management, 2006, 1(1): 6 − 6. doi: 10.1186/1750-0680-1-6
    [10] A. Park Williams, Craig D. Allen, Constance I. Millar, et al. Forest responses to increasing aridity and warmth in the southwestern United States. 2010, 107(50): 21289-21294.
    [11] 于东伟, 雷泽勇, 赵国军, 等. 樟子松固沙林土壤理化特性对林分密度的响应[J]. 干旱区研究, 2020, 37(1): 134 − 141.
    [12] 孙千惠, 吴 霞, 王媚臻, 等. 林分密度对马尾松林林下物种多样性和土壤理化性质的影响[J]. 应用生态学报, 2018, 29(3): 732 − 738.
    [13] 王媚臻, 毕浩杰, 金 锁, 等. 林分密度对云顶山柏木人工林林下物种多样性和土壤理化性质的影响[J]. 生态学报, 2019, 39(3): 981 − 988.
    [14] 王宝荣, 曾全超, 安韶山, 等. 黄土高原子午岭林区两种天然次生林植物叶片-凋落叶-土壤生态化学计量特征[J]. 生态学报, 2017, 37(16): 5461 − 5473.
    [15] 李明军, 喻理飞, 杜明凤, 等. 不同林龄杉木人工林植物-凋落叶-土壤C、N、P化学计量特征及互作关系[J]. 生态学报, 2018, 38(21): 7772 − 7781.
    [16] 贺 敏, 魏江生, 石 亮, 等. 大兴安岭南段山杨径向生长和死亡对区域气候变化的响应[J]. 生态学杂志, 2018, 37(11): 3237 − 3244.
    [17] 王亚东, 魏江生, 周 梅, 等. 大兴安岭南段杨桦次生林土壤化学计量特征[J]. 土壤通报, 2020, 51(5): 1056 − 1064.
    [18] 鲍士旦, 土壤农化分析[M]. 北京: 中国农业出版社, 2002: 47-56.
    [19] 陈 婵, 王光军, 赵 月, 等. 会同杉木器官间C、N、P化学计量比的季节动态与异速生长关系[J]. 生态学报, 2016, 36(23): 7614 − 7623.
    [20] 董 雪, 辛智鸣, 黄雅茹, 等. 乌兰布和沙漠典型灌木群落土壤化学计量特征[J]. 生态学报, 2019, 39(17): 6247 − 6256.
    [21] 秦 娟, 孔海燕, 刘 华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2): 68 − 76 + 82.
    [22] 张亚茹, 欧阳旭, 褚国伟, 等. 鼎湖山季风常绿阔叶林土壤有机碳和全氮的空间分布[J]. 应用生态学报, 2014, 25(1): 19 − 23.
    [23] 张 萍, 章广琦, 赵一娉, 等. 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征[J]. 生态学报, 2018, 38(14): 5087 − 5098.
    [24] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937 − 3947. doi: 10.3321/j.issn:1000-0933.2008.08.054
    [25] 程 滨, 赵永军, 张文广, 等. 生态化学计量学研究进展[J]. 生态学报, 2010, 30(6): 1628 − 1637.
    [26] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000.
    [27] 陶晓, 俞元春, 张云彬,等. 城市森林土壤碳氮磷含量及其生态化学计量特征[J]. 生态环境学报, 2020, 29(1): 88 − 96.
    [28] Batjes N H. Total carbon and nitrogen in the soils of the world[M]. European Journal of Soil Science, 1996, 47: 151-163.
    [29] 王维奇, 徐玲琳, 曾从盛, 等. 河口湿地植物活体-枯落物-土壤的碳氮磷生态化学计量特征[J]. 生态学报, 2011, 31(23): 134 − 139.
    [30] 赵谷风, 蔡 延, 罗媛媛, 等. 青冈常绿阔叶林凋落物分解过程中营养元素动态[J]. 生态学报, 2005, 26(10): 3286 − 3295.
    [31] Parton W, Silver W L, Burke I C, et al. Global-Scale Similarities in Nitrogen Release Patterns During Long-Term Decomposition[J]. Science, 2007, 315(5810): 361 − 364. doi: 10.1126/science.1134853
    [32] Mcgroddy M E, Daufresne T, Hedin L O. Scaling of C: N: P stoichiometry in forest worldwide: implications of terrestrial Redfield-type ratios[J]. Ecology, 2004, 85(9): 2390 − 2401. doi: 10.1890/03-0351
    [33] Elser J J, Fagan W F, Denno R F, et al. Nutritional constraints in terrestrial and freshwater food webs[J]. Nature, 2000, 408(6812): 578 − 80. doi: 10.1038/35046058
    [34] Han W, Fang J, Guo D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377 − 385. doi: 10.1111/j.1469-8137.2005.01530.x
    [35] 鲁志云, 宋 亮, 王 训, 等. 哀牢山森林凋落物与腐殖质及土壤的生态化学计量特征[J]. 山地学报, 2017, 35(3): 274 − 282.
    [36] Hidaka A, Kitayama K. Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response to decreased soil phosphorus availability on Mount Kinabalu, Borneo[J]. Journal of Ecology, 2011, 99(3): 849 − 857. doi: 10.1111/j.1365-2745.2011.01805.x
    [37] 鲍雅静, 李政海, 韩兴国, 等. 植物热值及其生物生态学属性[J]. 生态学杂志, 2006, (9): 1095 − 1103. doi: 10.3321/j.issn:1000-4890.2006.09.017
    [38] 印婧婧, 郭大立, 何思源, 等. 内蒙古半干旱区树木非结构性碳、氮、磷的分配格局[J]. 北京大学学报(自然科学版), 2009, 45(3): 519 − 527.
    [39] 冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展[J]. 应用与环境生物学报, 2017, (2): 220 − 228.
    [40] Agren G I. The C: N: P stoichiometry of autotrophs-Theory and observations[J]. Ecology Letters, 2004, 7(3): 185 − 191. doi: 10.1111/j.1461-0248.2004.00567.x
    [41] 刘 璐, 葛结林, 舒化伟, 等. 神农架常绿落叶阔叶混交林碳氮磷化学计量比[J]. 植物生态学报, 2019, 43(6): 482 − 489. doi: 10.17521/cjpe.2019.0064
    [42] 张蕾蕾, 钟全林, 程栋梁, 等. 刨花楠叶片碳氮磷化学计量比与个体大小的关系[J]. 应用生态学报, 2015, 26(7): 1928 − 1934.
    [43] 赵 耀, 王百田, 李 萌, 等. 晋西吕梁山区3种森林碳氮磷生态化学计量特征[J]. 应用与环境生物学报, 2018, 24(3): 518 − 524.
    [44] 陈金玲, 金光泽, 赵凤霞. 小兴安岭典型阔叶红松林不同演替阶段凋落物分解及养分变化[J]. 应用生态学报, 2010, 21(9): 2209 − 2216.
    [45] 耿 燕, 周 鹏, 贺金生, 等. 温带草地主要优势植物不同器官间功能性状的关联[J]. 植物生态学报, 2010, 34(1): 7 − 16. doi: 10.3773/j.issn.1005-264x.2010.01.003
    [46] Michaelian M, Hogg E H, Hall R J, et al. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest[J]. Global Change Biology, 2011, 17(6): 2084 − 2094. doi: 10.1111/j.1365-2486.2010.02357.x
  • 加载中
图(1) / 表(6)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  211
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-27
  • 修回日期:  2021-04-14
  • 网络出版日期:  2021-08-24
  • 刊出日期:  2021-08-06

目录

    /

    返回文章
    返回