留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同原料生物质炭复配对土壤镉的赋存形态及小白菜镉吸收的影响

康亚鑫 陈敬龙 周怡 罗梓维 田丰华 陈山国 李恋卿 潘根兴

康亚鑫, 陈敬龙, 周 怡, 罗梓维, 田丰华, 陈山国, 李恋卿, 潘根兴. 不同原料生物质炭复配对土壤镉的赋存形态及小白菜镉吸收的影响[J]. 土壤通报, 2021, 52(6): 1427 − 1435 doi: 10.19336/j.cnki.trtb.2021022101
引用本文: 康亚鑫, 陈敬龙, 周 怡, 罗梓维, 田丰华, 陈山国, 李恋卿, 潘根兴. 不同原料生物质炭复配对土壤镉的赋存形态及小白菜镉吸收的影响[J]. 土壤通报, 2021, 52(6): 1427 − 1435 doi: 10.19336/j.cnki.trtb.2021022101
KANG Ya-xin, CHEN Jing-long, ZHOU Yi, LUO Zi-wei, TIAN Feng-hua, CHEN Shan-guo, LI Lian-qing, PAN Gen-xing. Effects of Biochar Complexes from Different Raw Materials on Speciation and Cadmium Uptake of Chinese Cabbage in Contaminated Soil[J]. Chinese Journal of Soil Science, 2021, 52(6): 1427 − 1435 doi: 10.19336/j.cnki.trtb.2021022101
Citation: KANG Ya-xin, CHEN Jing-long, ZHOU Yi, LUO Zi-wei, TIAN Feng-hua, CHEN Shan-guo, LI Lian-qing, PAN Gen-xing. Effects of Biochar Complexes from Different Raw Materials on Speciation and Cadmium Uptake of Chinese Cabbage in Contaminated Soil[J]. Chinese Journal of Soil Science, 2021, 52(6): 1427 − 1435 doi: 10.19336/j.cnki.trtb.2021022101

不同原料生物质炭复配对土壤镉的赋存形态及小白菜镉吸收的影响

doi: 10.19336/j.cnki.trtb.2021022101
基金项目: 国家自然科学基金项目(42077148)及国家重点研发计划(2016YFD0800306)资助
详细信息
    作者简介:

    康亚鑫(1995−),女,江苏省南通市人,硕士研究生,主要从事生物质炭钝化重金属研究。E-mail: 2018103076@njau.edu.cn

    通讯作者:

    E-mail: lqli@njau.edu.cn

  • 中图分类号: X53

Effects of Biochar Complexes from Different Raw Materials on Speciation and Cadmium Uptake of Chinese Cabbage in Contaminated Soil

  • 摘要: 通过生物质炭复配,降低治理成本,为提高秸秆生物质炭对镉污染土壤的治理效果,将秸秆生物质炭(大豆秸秆炭(SSB)、油菜秸秆炭(RSB))与动物屠宰废弃物炭(SWB)复配,设置2.22 g kg−1(B1)、4.44 g kg−1(B2)两个施用量,通过小白菜盆栽试验,研究生物质炭对原位污染土壤镉赋存形态及小白菜镉吸收的影响。研究表明,与对照(CK)相比,生物质炭显著降低小白菜根系和地上部的镉含量。在4.44 g kg−1施炭水平下,SSB2和RSB2处理的小白菜根系镉含量较SWB2处理显著降低、降幅分别达 33.40%和 20.49%。SSB2处理小白菜根系镉的富集系数较SWB2处理显著降低、降幅达31.68%。与 SSB2处理相比,SSB与SWB复配(SSWB2)处理根系和地上部镉含量分别降低22.57%和 36.14%。生物质炭显著降低土壤中镉的生物有效性,其中RSB2和SSB2处理的土壤交换态镉占比(F2)较SWB 2处理分别降低 9.31%和 3.63%,强有机结合态镉占比(F6)分别提高 16.11%和 9.74%。复配生物质炭SSWB2 处理的F2较SSB2 处理降低 11.05%,铁锰结合态镉占比(F5)提高13.50%。因此,秸秆生物质炭与屠宰废弃物炭复配可有效降低污染土壤镉的生物有效性及小白菜对镉的吸收和富集。
  • 图  1  生物质炭对小白菜生物量的影响

    Figure  1.  Effects of biochars on biomass of Chinese cabbage

    图  2  不同生物质炭处理下小白菜根系镉含量(a)和地上部镉含量(b)的变化

    Figure  2.  Changes of cadmium content in root (a) and the aboveground part (b) of Chinese cabbage under different biochar treatments

    图  3  不同生物质炭处理下BCF(a)和TF(b)

    Figure  3.  Changes of bio-concentration factors of Cd in root (a) and Cd translocation factor from root to Chinese cabbage (b) under different biochar treatments

    图  4  土壤中不同形态镉的含量占总量的百分数

    Figure  4.  Changes of different Cd fractions in soil with different biochar treatments

    图  5  不同生物质炭处理下土壤pH的变化

    Figure  5.  Changes of soil pH values under different biochar treatments

    图  6  土壤pH与小白菜地上部镉含量(a)、根系镉含量(b)的相关性关系

    Figure  6.  Correlations of soil pH and cadmium contents in the aboveground part (a) and in root (b) of Chinese cabbage

    图  7  土壤中生物有效态镉含量与小白菜地上部镉含量(a)、根系镉含量(b)的相关性关系

    Figure  7.  Correlations of soil bioavailable cadmium content and cadmium contents in the aboveground part (a) and in root (b) of Chinese cabbage

    表  1  生物质炭的性质

    Table  1.   Properties of biochars

    生物质炭
    Biochar
    SWBSSBRSB
    pH 8.16 ± 0.02 c 9.80 ± 0.05 a 9.61 ± 0.02 b
    EC(ms cm−1 0.67 ± 0.01 c 1.64 ± 0.01 b 8.65 ± 0.06 a
    DOC(g kg−1 1.93 ± 0.01 b 4.24 ± 0.08 a 4.06 ± 0.13 a
    CEC(cmol kg−1 48.61 ± 2.54 c 69.46 ± 2.07 b 73.49 ± 3.35 a
    C(%) 6.73 ± 0.06 c 61.89 ± 0.49 a 56.94 ± 0.77 b
    H(%) 1.27 ± 0.05 c 3.45 ± 0.04 a 3.11 ± 0.06 b
    N(%) 1.00 ± 0.004 b 1.33 ± 0.008 a 0.96 ± 0.006 c
    全K(g kg−1 1.10 ± 0.04 c 15.41 ± 0.39 b 47.16 ± 0.55 a
    全Ca(g kg−1 264.7 ± 4.3 a 32.31 ± 0.86 b 24.32 ± 0.54 c
    全Mg(g kg−1 5.85 ± 0.18 b 14.41 ± 0.29 a 3.67 ± 0.05 c
    全P(g kg−1 127.6 ± 2.8 a 0.89 ± 0.02 c 2.61 ± 0.08 b
    全S(g kg−1 0.33 ± 0.04 c 2.28 ± 0.06 b 6.47 ± 0.86 a
    全Cd(mg kg−1 0.27 ± 0.01 a 0.09 ± 0.01 c 0.19 ± 0.01 b
    比表面 SBET(m2 g−1 124.9 3.16 5.22
    平均孔径 Average pore size(nm) 90.61 9.21 5.69
    总孔体积 Total pore volume(cm3 g−1 0.283 0.00728 0.00743
      注:同行小写字母表示不同处理差异显著(P < 0.05)。
    下载: 导出CSV

    表  2  供试土壤基本性质

    Table  2.   Basic properties of soil

    pH阳离子交换量(cmol kg−1
    CEC
    有机质(g kg−1
    Organic matter
    全氮(g kg−1
    Total nitrogen
    速效磷(mg kg−1
    Available phosphorus
    速效钾(mg kg−1
    Available potassium
    全镉(mg kg−1
    Total cadmium
    7.03 ± 0.05 2.68 ± 0.02 22.20 ± 0.10 1.23 ± 0.01 9.65 ± 0.06 80.21 ± 1.21 0.43 ± 0.06
    下载: 导出CSV
  • [1] Huang Y, Wang L, Wang W, et al. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis[J]. Science of the Total Environment, 2019, 651: 3034 − 3042. doi: 10.1016/j.scitotenv.2018.10.185
    [2] Yang Q, Li Z, Lu X, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690 − 700. doi: 10.1016/j.scitotenv.2018.06.068
    [3] Zhang C, Wu L, Luo Y, et al. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach: Role of pollutant migration and soil physicochemical properties[J]. Environmental Pollution, 2008, 151(3): 470 − 476. doi: 10.1016/j.envpol.2007.04.017
    [4] Patar A, Giri A, Boro F, et al. Cadmium pollution and amphibians - Studies in tadpoles of rana limnocharis[J]. Chemosphere, 2016, 144: 1043 − 1049. doi: 10.1016/j.chemosphere.2015.09.088
    [5] 全国土壤污染状况调查公报(2014年4月17日)[J]. 环境教育, 2014, (6): 8 − 10.
    [6] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7): 381 − 387. doi: 10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
    [7] Lehmann J. A handful of carbon[J]. Nature, 2007, 447(7141): 143 − 144. doi: 10.1038/447143a
    [8] Woods W I, Falcao N P S, Teixeira W G. Biochar trials aim to enrich soil for smallholders[J]. Nature, 2006, 443(7108): 144 − 144.
    [9] Zhang A F, Cui L Q, Pan G X, et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake Plain, China[J]. Agriculture Ecosystems & Environment, 2010, 139(4): 469 − 475.
    [10] Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere, 2014, 99: 19 − 33. doi: 10.1016/j.chemosphere.2013.10.071
    [11] Bian R J, Joseph S, Cui L Q, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272: 121 − 128. doi: 10.1016/j.jhazmat.2014.03.017
    [12] Li H, Dong X, SILVA E B D, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466 − 478. doi: 10.1016/j.chemosphere.2017.03.072
    [13] Chen D, Liu X Y, Bian R J, et al. Effects of biochar on availability and plant uptake of heavy metals - A meta-analysis[J]. Journal of Environmental Management, 2018, 222: 76 − 85.
    [14] Gao R L, Hu H Q, Fu Q L, et al. Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate: Speciation transformation, risk evaluation and mechanism inquiry[J]. Science of the Total Environment, 2020, 730: 10.
    [15] Sui F, Jiao M, Kang Y, et al. Investigating the cadmium adsorption capacities of crop straw biochars produced using various feedstocks and pyrolysis temperatures[J]. Environmental Science and Pollution Research, 2021, 28: 21516 − 21527. doi: 10.1007/s11356-020-11979-3
    [16] Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil Use and Management, 2011, 27(1): 110 − 115. doi: 10.1111/j.1475-2743.2010.00317.x
    [17] Gruden E, Bukovec P, Zupancic M. Preliminary evaluation of animal bone char as potential metal stabilization agent in metal contaminated soil[J]. Acta Chimica Slovenica, 2017, 64(3): 577 − 581.
    [18] Wang G, Zhang Q, Du W, et al. In-situ immobilization of cadmium-polluted upland soil: A ten-year field study[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111275. doi: 10.1016/j.ecoenv.2020.111275
    [19] Lahori A H, Zhang Z, Shaheen S M, et al. Mono-and co-applications of Ca-bentonite with zeolite, Ca-hydroxide, and tobacco biochar affect phytoavailability and uptake of copper and lead in a gold mine-polluted soil[J]. Journal of Hazardous materials, 2019, 374: 401 − 411. doi: 10.1016/j.jhazmat.2019.04.057
    [20] Rehman M Z U, Khalid H, Akmal F, et al. Effect of limestone, lignite and biochar applied alone and combined on cadmium uptake in wheat and rice under rotation in an effluent irrigated field[J]. Environmental Pollution, 2017, 227: 560 − 568. doi: 10.1016/j.envpol.2017.05.003
    [21] Sui F, Wang J, Zuo J, et al. Effect of amendment of biochar supplemented with Si on Cd mobility and rice uptake over three rice growing seasons in an acidic Cd-tainted paddy from central South China[J]. Science of the Total Environment, 2020, 709: 136101. doi: 10.1016/j.scitotenv.2019.136101
    [22] 黄益宗, 郝晓伟. 赤泥、骨炭和石灰对玉米吸收积累As、Pb和Zn的影响[J]. 农业环境科学学报, 2013, 32(3): 456 − 462.
    [23] Li H, Ye X, Geng Z, et al. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils[J]. Journal of Hazardous Materials, 2016, 304: 40 − 48. doi: 10.1016/j.jhazmat.2015.10.048
    [24] 李 英, 朱司航, 商建英, 等. 土壤镉和砷污染钝化修复材料及科学计量研究[J]. 农业环境科学学报, 2019, 38(9): 2011 − 2022. doi: 10.11654/jaes.2019-0601
    [25] Huang L, Li W C, Tam N F Y, et al. Effects of root morphology and anatomy on cadmium uptake and translocation in rice (Oryza Sativa L.)[J]. Journal of Environmental Sciences, 2019, 75: 296 − 306. doi: 10.1016/j.jes.2018.04.005
    [26] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [27] Dd 2005—03, 生态地球化学评价样品分析技术要求(试行)[S].
    [28] Chen H, Yang X, Wang P, et al. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, Southern China[J]. Science of the Total Environment, 2018, 639: 271 − 277. doi: 10.1016/j.scitotenv.2018.05.050
    [29] Zhao K, Liu X, Zhang W, et al. Spatial dependence and bioavailability of metal fractions in paddy fields on metal concentrations in rice grain at a regional scale[J]. Journal of Soils and Sediments, 2011, 11(7): 1165 − 1177. doi: 10.1007/s11368-011-0408-6
    [30] Khan K Y, Ali B, Cui X Q, et al. Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pakchoi (Brassica Rapa Ssb. Chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity[J]. Ecotoxicology and Environmental Safety, 2017, 141: 129 − 138. doi: 10.1016/j.ecoenv.2017.03.020
    [31] Wang J, Shi L, Zhai L, et al. Analysis of the long-term effectiveness of biochar immobilization remediation on heavy metal contaminated soil and the potential environmental factors weakening the remediation effect: A review[J]. Ecotoxicology and Environmental Safety, 2021, 207: 111261. doi: 10.1016/j.ecoenv.2020.111261
    [32] 毛懿德, 铁柏清, 叶长城, 等. 生物炭对重污染土壤镉形态及油菜吸收镉的影响[J]. 生态与农村环境学报, 2015, 31(4): 579 − 582. doi: 10.11934/j.issn.1673-4831.2015.04.021
    [33] 李明遥, 张 妍, 杜立宇, 等. 生物炭与沸石混施对土壤cd形态转化的影响[J]. 水土保持学报, 2014, 28(3): 248 − 252.
    [34] Xu Z B, Xu X Y, Tsang D C W, et al. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils[J]. Environmental Pollution, 2018, 242: 1362 − 1370. doi: 10.1016/j.envpol.2018.08.012
    [35] Gruter R, Costerousse B, Mayer J, et al. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat[J]. Science of the Total Environment, 2019, 669: 608 − 620. doi: 10.1016/j.scitotenv.2019.03.112
    [36] Rees F, Simonnot M O, Morel J L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil ph increase[J]. European Journal of Soil Science, 2014, 65(1): 149 − 161. doi: 10.1111/ejss.12107
    [37] Hassan S S M, Awwad N S, Aboterika A H A. Removal of mercury(II) from wastewater using camel bone charcoal[J]. Journal of Hazardous materials, 2008, 154(1-3): 992 − 997. doi: 10.1016/j.jhazmat.2007.11.003
    [38] Ahmad P, Sarwat M, Bhat N A, et al. Alleviation of cadmium toxicity in Brassica Juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies[J]. Plos One, 2015, 10(1): 17.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  102
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-28
  • 修回日期:  2021-07-30
  • 刊出日期:  2021-12-08

目录

    /

    返回文章
    返回