留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于知识图谱的黑土地研究领域发展态势分析

袁洁 赵晏强

袁 洁, 赵晏强. 基于知识图谱的黑土地研究领域发展态势分析[J]. 土壤通报, 2021, 52(6): 1436 − 1446 doi: 10.19336/j.cnki.trtb.2021032304
引用本文: 袁 洁, 赵晏强. 基于知识图谱的黑土地研究领域发展态势分析[J]. 土壤通报, 2021, 52(6): 1436 − 1446 doi: 10.19336/j.cnki.trtb.2021032304
YUAN Jie, ZHAO Yan-qiang. Development Trend of Black Soil Research Based on the Knowledge Map[J]. Chinese Journal of Soil Science, 2021, 52(6): 1436 − 1446 doi: 10.19336/j.cnki.trtb.2021032304
Citation: YUAN Jie, ZHAO Yan-qiang. Development Trend of Black Soil Research Based on the Knowledge Map[J]. Chinese Journal of Soil Science, 2021, 52(6): 1436 − 1446 doi: 10.19336/j.cnki.trtb.2021032304

基于知识图谱的黑土地研究领域发展态势分析

doi: 10.19336/j.cnki.trtb.2021032304
基金项目: 中国科学院文献情报能力建设项目(Y9KZ411003)资助
详细信息
    作者简介:

    袁洁:袁 洁(1990−),女,湖北人,博士,特别研究助理,主要从事生态与资源环境领域情报研究。E-mail: yuanj@mail.whlib.ac.cn

    通讯作者:

    Email: zhaoyq@mail.whlib.ac.cn

  • 中图分类号: S15

Development Trend of Black Soil Research Based on the Knowledge Map

  • 摘要: 分析黑土地研究领域的发展态势,能为我国黑土地保护与保障粮食安全提供情报参考。通过文献计量学和科学知识图谱的方法,对1990—2020年黑土地研究领域的SCI论文进行计量学统计,探讨该领域的研究现状、研究重点和发展趋势。结果表明,全球范围内黑土地研究领域的发文量逐年增长,其中,中国的发文量和H指数居首位,美国和德国发表论文的篇均被引次数高于其他国家,体现了其较高的发文水平。以中国科学院为首的中国研究机构是该研究领域的重要参与者和合作网络中心。发文期刊水平差距较大,论文的总体质量有待提升。黑土地研究领域涉及的学科领域分布广泛,其中土壤科学和环境科学的占比最高,且多学科交叉融合的趋势较明显。黑土地研究经历了从最开始的提高粮食产量,发展为以改善土壤有机质、微生物群落结构、土壤侵蚀等为主题的科学研究。未来应继续加强学科交叉融合,关注土壤质量和健康,落实黑土地保护工作。
  • 图  1  1990—2020年黑土地研究的年度发文变化

    Figure  1.  Quantity of publications on Black soil research from 1990 to 2020

    图  2  1990—2020年黑土地研究排名前10位国家发文量

    Figure  2.  Quantity of publications by top 10 countries on Black soil research from 1990 to 2020

    图  3  1990 ~ 2020年黑土地研究领域前50个机构间的合作网络

    Figure  3.  Cooperative network between top 100 countries on Black soil research from 1990 to 2020

    图  4  1990—2020年黑土地研究主要涉及的学科类别

    Figure  4.  Major subjects on Black soil research from 1990 to 2020

    图  5  1990—2000年黑土地研究的关键词知识图谱

    Figure  5.  Knowledge map of keywords on Black soil research from 1990 to 2000

    图  6  2001—2014年黑土地研究的关键词知识图谱

    Figure  6.  Knowledge map of keywords on Black soil research from 2001 to 2014

    图  7  2015—2020年黑土地研究的关键词知识图谱

    Figure  7.  Knowledge map of keywords on Black soil research from 2015 to 2020

    图  8  1990—2020年黑土地研究领域的关键词突现图谱

    Figure  8.  Knowledge map of burst keywords on Black soil research from 1990 to 2020

    表  1  1990—2020年黑土地研究发文量排名前10的国家

    Table  1.   Top 10 countries of Black soil research

    序号
    Number
    国家
    Country
    发文量
    Number of published article
    H指数
    H index
    总被引次数
    Total cited time
    篇均被引次数
    Citation per article
    1 中国 893 51 11989 13.43
    2 印度 177 18 1208 6.82
    3 加拿大 143 30 3032 21.2
    4 美国 142 32 3393 23.89
    5 德国 49 18 1095 22.35
    6 澳大利亚 42 13 684 16.29
    7 日本 27 11 503 18.63
    8 法国 20 10 319 15.95
    9 波兰 20 5 201 10.05
    10 瑞士 16 4 145 9.06
    下载: 导出CSV

    表  2  1990—2020年黑土地研究SCI论文的主要发文机构

    Table  2.   Major institutions contributing SCI papers on Black soil research from 1990 to 2020

    机构
    Institution
    发文量
    Number of published article
    H指数
    H index
    总被引频次
    Total cited time
    篇均被引次数
    Citation per article
    Chinese Academy of Sciences 423 40 7034 16.63
    Agriculture Agri Food Canada 98 24 1943 19.83
    Northeast Agricultural University China 90 15 748 8.31
    Chinese Academy of Agricultural Sciences 81 19 1070 13.21
    Indian Council of Agricultural Research ICAR 74 15 628 7.95
    Heilongjiang Academy of Agricultural Sciences 56 14 735 13.13
    Beijing Normal University 53 17 849 14.64
    Jilin Agricultural University 49 7 248 5.06
    China Agricultural University 43 15 702 16.33
    Jilin Academy of Agricultural Sciences 37 10 323 8.73
    下载: 导出CSV

    表  3  1990—2020年黑土地研究SCI论文的主要发文期刊

    Table  3.   Major journals on Black soil research from 1990 to 2020

    期刊
    Journal
    所属国家
    Country
    影响因子
    Impact Factor
    JCR分区
    JCR partition
    中科院分区(2020)
    Partition of CAS
    Soil & Tillage Research 荷兰 4.601 Q1 1
    Geoderma 荷兰 4.848 Q1 1
    Science of the Total Environment 荷兰 6.551 Q1 1
    Canadian Journal of Plant Science 加拿大 0.85 Q3 4
    Communications in Soil Science and Plant Analysis 美国 0.767 Q4 4
    Spectroscopy and Spectral Analysis 中国 0.452 Q4 3
    Applied Soil Ecology 荷兰 3.187 Q2 2
    Canadian Journal of Soil Science 加拿大 1.171 Q4 4
    Soil Biology & Biochemistry 英国 5.795 Q1 1
    Indian Journal of Agricultural Sciences 印度 0.208 Q4 4
    下载: 导出CSV

    表  4  1990—2020年黑土地研究SCI高被引论文

    Table  4.   Highly cited papers on Black soil research from 1990 to 2020

    论文题目
    Title
    被引频次
    Citation counts
    发文期刊
    Journal
    研究内容
    Research content
    出版年
    Year
    High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China 207 SOIL BIOLOGY & BIOCHEMISTRY 东北黑土地古细菌群落的生物地理分布 2014
    Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China 133 SOIL BIOLOGY & BIOCHEMISTRY 施肥34 年对东北深耕黑土细菌群落的影响 2015
    Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China 105 SOIL BIOLOGY & BIOCHEMISTRY 土壤碳驱动的黑土地真菌群落的生物地理分布 2015
    Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China 100 SOIL BIOLOGY & BIOCHEMISTRY 东北施氮34年减少了真菌多样性并改变了真菌的组成 2016
    Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China 96 SOIL BIOLOGY & BIOCHEMISTRY 三年生物炭改良剂改变了中国东北黑土的土壤理化性质和真菌群落组成 2017
    Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China 59 APPLIED SOIL ECOLOGY 东北黑土生物炭施用三年后细菌群落组成的变化 2017
    Effect of straw return mode on soil aggregation and aggregate carbon content in an annual maize-wheat double cropping system 48 SOIL & TILLAGE RESEARCH 秸秆还田方式对玉米-小麦双作年度土壤团聚体和总碳含量的影响 2018
    Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China 28 SOIL & TILLAGE RESEARCH 有机质对东北黑土中磷吸附和解吸的影响 2019
    Effects of freeze-thaw cycles on aggregate-associated organic carbon and glomalin-related soil protein in natural-succession grassland and Chinese pine forest on the Loess Plateau 21 GEODERMA 黄土高原天然演替草地和松林冻融循环对骨料相关有机碳和球囊霉素相关土壤蛋白的影响 2019
    下载: 导出CSV

    表  5  黑土地研究领域不同时期前10位高频关键词

    Table  5.   High frequency keywords on Black soil research in different periods

    序号
    Number
    1990—2000 2001—2014 2015—2020 years
    关键词
    Keyword
    频次
    Frequency
    关键词
    Keyword
    频次
    Frequency
    关键词
    Keyword
    频次
    Frequency
    1 6 黑土 79 黑土 97
    2 产量 5 土壤 24 土壤 29
    3 黑土 4 土壤有机质 19 土壤侵蚀 28
    4 4 产量 18 生物炭 26
    5 小麦 4 软土 15 软土 25
    6 芜菁 3 土壤有机碳 15 黑土区 22
    7 亚麻 3 腐殖酸 13 长期施肥 19
    8 硫酸 2 长期施肥 12 细菌群落 18
    9 品种描述 2 品种描述,玉米 11 微生物群 18
    10 经济学 2 吸附 9 土壤有机质 18
    下载: 导出CSV
  • [1] Liang A Z, Yang X M, Zhang X P, et al. Changes in soil organic carbon stocks under 10-year conservation tillage on a black soil in Northeast China[J]. Journal of Agricultural Science, 2016, 154(8): 1425 − 1436. doi: 10.1017/S002185961500132X
    [2] Liu X B, Zhang X Y, Wang Y X, et al. Soil degradation: A problem threatening the sustainable development of agriculture in Northeast China[J]. Plant Soil and Environment, 2010, 56(2): 87 − 97. doi: 10.17221/155/2009-PSE
    [3] 魏 丹, 匡恩俊, 迟凤琴, 等. 东北黑土资源现状与保护策略[J]. 黑龙江农业科学, 2016, 16(1): 158 − 161.
    [4] 赵 旭, 樊 军, 付 威. 土壤侵蚀与土地利用方式对黑土地土壤水气传输特性的影响[J]. 应用生态学报, 2020, 31(5): 1599 − 1606.
    [5] 汪景宽, 徐香茹, 裴久渤, 李双异. 东北黑土地区耕地质量现状与面临的机遇和挑战[J]. 土壤通报, 2021, 52(3): 695 − 701.
    [6] 韩晓增, 邹文秀. 我国东北黑土地保护与肥力提升的成效与建议[J]. 中国科学院院刊, 2018, 33(2): 206 − 212.
    [7] 迟婧茹, 陶 蕊, 李 婷. 科技评估国际研究前沿与行业现状述评[J]. 科研管理, 2019, 40(6): 276 − 284.
    [8] 吕巧枝. 基于文献计量的嵌入式学科服务研究现状及思考[J]. 图书馆, 2018, 291(12): 92 − 97. doi: 10.3969/j.issn.1002-1558.2018.12.015
    [9] Wedin D, Tilman D. Competition among grasses along a nitrogen gradient: Initial conditions and mechanisms of competition[J]. Ecological Monographs, 1993, 63(2): 199 − 229. doi: 10.2307/2937180
    [10] Penney D C, Nolan S C, Mckenzie R C, et al. Yield and nutrient mapping for site specific fertilizer management[J]. Communications in Soil Science and Plant Analysis, 1997, 27(5 − 8): 1265 − 1279.
    [11] Soon Y K. Solubility and retention of phosphate in soils of the northwestern Canadian prairie[J]. Canadian Journal of Soil Science, 1991, 71(4): 453 − 463. doi: 10.4141/cjss91-044
    [12] Muller S. N-uptake and N-utilization of different fertilizer types by winter-wheat-pot experiments with 15N[J]. Journal of Agronomy and Crop Science, 1992, 168(4): 272 − 277. doi: 10.1111/j.1439-037X.1992.tb01009.x
    [13] 彭现宪. 长期不同种植模式下东北黑土理化性状和有机碳稳定性的差异研究[D]. 南京: 南京农业大学. 2011.
    [14] 韩晓增, 李 娜. 中国东北黑土地研究进展与展望[J]. 地理科学, 2018, 38(7): 1032 − 1041.
    [15] 杨景成, 韩兴国, 黄建辉, 等. 土壤有机质对农田管理措施的动态响应[J]. 生态学报, 2003, 23(4): 743 − 747.
    [16] Campbell C A, Zentner R P, Bowren K E, et al. Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick black chernozem[J]. Canadian Journal of Soil Science, 1991, 71(3): 377 − 387. doi: 10.4141/cjss91-036
    [17] Xing B S, Liu J D, Liu X B, et al. Extraction and characterization of humic acids and humin fractions from a black soil of China[J]. Pedosphere, 2005, 15(1): 1 − 8.
    [18] Xu D, Zhu S, Chen H, et al. Structural characterization of humic acids isolated from typical soils in China and their adsorption characteristics to phenanthrene[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2006, 276(1 − 3): 1 − 7.
    [19] Zhang C, Mcgrath D. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods[J]. Geoderma, 2004, 119(3 − 4): 261 − 275. doi: 10.1016/j.geoderma.2003.08.004
    [20] Stevenson F J, Cole M A. Cycles of Soil[M]. Wiley, New York, 1999.
    [21] Lal R, Kimble J M, Levine E, et al. World soils and greenhouse effect: An overview[M]. In: Lal R, Kimble J M, Levine E, Stewart B A. (Eds.), Soils and Global Change. CRC Press, Boca Raton, FL, 1995. pp. 1–8.
    [22] Flach K W, Barnwell T O, Crosson P, 1997. Impacts of agriculture on atmospheric carbon dioxide[M]. In: Paul E A, Paustian K, Elliott E T, Cole C V. (Eds.), Soil Organic Matter in Temperate Agroecosystems, Long-Term Experiments in North America. CRC Press, Boca Raton, FL, pp. 3–13.
    [23] Post W M, Kwon K C. Soil carbon sequestration and land-use change: Processes and potential[J]. Global Change Biology, 2000, 6(3): 317 − 327. doi: 10.1046/j.1365-2486.2000.00308.x
    [24] Liu D, Wang Z, Zhang B, et al. Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China[J]. Agriculture Ecosystems & Environment, 2006, 113(1 − 4): 73 − 81.
    [25] Lu J, Zheng F L, Li G F, et al. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the mollisol region of Northeast China[J]. Soil & Tillage Research, 2016, 161: 79 − 85.
    [26] Ouyang W, Wu Y Y, Hao Z C, et al. Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development[J]. Science of the Total Environment, 2018, 613-614: 798 − 809. doi: 10.1016/j.scitotenv.2017.09.173
    [27] Wang F, Chen S, Zhang K Q, et al. Impact of nitrogen fertilizer source on nitrous oxide (N2O) emissions from three different agricultural soils during freezing conditions[J]. Toxicological & Environmental Chemistry, 2016, 98(5 − 6): 551 − 560.
    [28] Bei S, Zhang Y, Li T, et al. Response of the soil microbial community to different fertilizer inputs in a wheat-maize rotation on a calcareous soil[J]. Agriculture Ecosystems & Environment, 2018, 260: 58 − 69.
    [29] Celik I. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey[J]. Soil & Tillage Research, 2005, 83(2): 270 − 277.
    [30] Giertz S, Junge B, Diekkrüger B. Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa[J]. Physical Chemistry, Earth Parts A/B/C, 2005, 30(8): 485 − 496.
    [31] Haghighi F, Gorji M, Shorafa M. A study of the effects of land use changes on soil physical properties and organic matter[J]. Land Degradation & Development, 2010, 21(5): 496 − 502.
    [32] Lauber C L, Strickland M S, Bradford M A, et al. The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology & Biochemistry, 2008, 40(9): 2407 − 2415.
    [33] Li H, Liao X, Zhu H, et al. Soil physical and hydraulic properties under different land uses in the black soil region of Northeast China[J]. Canadian Journal of Soil Science, 2019, 99(4): 406 − 419. doi: 10.1139/cjss-2019-0039
    [34] Fang H, Fan Z. Impacts of climate and land use changes on water and sediment yields for the black soil region, northeastern China[J]. Environment Development and Sustainability, 2020, 23: 6259 − 6278.
    [35] Navratil J, Krejci T, Martinat S, et al. Brownfields do not “only live twice”: The possibilities for heritage preservation and the enlargement of leisure time activities in Brno, the Czech Republic[J]. Cities, 2017, (74): 52 − 63.
    [36] Torsvik V, Øvreås L, Thingstad T F. Prokaryotic diversity-magnitude, dynamics, and controlling factors[J]. Science, 2002, (296): 1064 − 1066.
    [37] Falkowski P G, Fenchel T, Delong E F. The microbial engines that drive Earth’s biogeochemical cycles[J]. Science, 2008, 320(5879): 1034 − 1039. doi: 10.1126/science.1153213
    [38] Sparling G P, Pankhurst C, Doube B, et al. Soil microbial biomass, activity and nutrient cycling as indicators of soil health[M]. In: C. E. Pankhurst, B. M. Doube, V. V. S. R. Gupta (Eds.), Biological Indicators of Soil Health, CAB International, UK, 1997, 97-119.
    [39] Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: A review[J]. Biology and Fertility of Soils, 1999, (29): 111 − 129.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  117
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-07-23
  • 刊出日期:  2021-12-08

目录

    /

    返回文章
    返回