留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电阻率层析成像法在土壤水文学中的应用

段国秀 贾小旭 白晓 魏孝荣

段国秀, 贾小旭, 白 晓, 魏孝荣. 电阻率层析成像法在土壤水文学中的应用−基于CiteSpace的计量分析[J]. 土壤通报, 2021, 52(6): 1447 − 1459 doi: 10.19336/j.cnki.trtb.2021042701
引用本文: 段国秀, 贾小旭, 白 晓, 魏孝荣. 电阻率层析成像法在土壤水文学中的应用−基于CiteSpace的计量分析[J]. 土壤通报, 2021, 52(6): 1447 − 1459 doi: 10.19336/j.cnki.trtb.2021042701
DUAN Guo-xiu, JIA Xiao-xu, BAI Xiao, WEI Xiao-rong. Application and Progress of Electrical Resistivity Tomography in Pedohydrology-Citespace-based Quantitative Analysis[J]. Chinese Journal of Soil Science, 2021, 52(6): 1447 − 1459 doi: 10.19336/j.cnki.trtb.2021042701
Citation: DUAN Guo-xiu, JIA Xiao-xu, BAI Xiao, WEI Xiao-rong. Application and Progress of Electrical Resistivity Tomography in Pedohydrology-Citespace-based Quantitative Analysis[J]. Chinese Journal of Soil Science, 2021, 52(6): 1447 − 1459 doi: 10.19336/j.cnki.trtb.2021042701

电阻率层析成像法在土壤水文学中的应用基于CiteSpace的计量分析

doi: 10.19336/j.cnki.trtb.2021042701
基金项目: 中国科学院战略性先导科技专项(XDB40020305)和国家自然科学基金项目(42022048)资助
详细信息
    作者简介:

    段国秀(1996−),女,青海西宁人,硕士研究生,主要从事土壤物理与水文生态学研究。E-mail: duangx@nwafu.edu.cn

    通讯作者:

    E-mail: xrwei78@163.com

  • 中图分类号: P343.9

Application and Progress of Electrical Resistivity Tomography in Pedohydrology-Citespace-based Quantitative Analysis

  • 摘要: 电阻率层析成像法(Electrical Resistivity Tomography, ERT)已被广泛用于土壤水文过程研究,充分了解ERT在土壤水文学中的应用及进展是研究土壤水文过程的关键。利用科技文献挖掘与可视化工具CiteSpace,对从Web of Science数据库核心合集中获取的1992—2020年的717篇论文,从国家机构合作、作者合作与共被引、关键词共现与聚类、关键词突发性检测、文献共被引及聚类和文献突发性检测等六个视角进行分析。结果表明,2000—2010年期间是ERT发展的繁荣时期,ERT技术的发展使得其研究方向从理论向应用转变,研究对象从最初的深层地质勘探向非饱和带水文过程的研究扩展,研究尺度从点尺度向中尺度拓展。ERT在生态水文、农业、地球物理等领域的应用使得其研究方向趋于多元化,在土壤水文过程研究中涉及作物根系吸水、根系对水分的再分配、降雨入渗、优先流和深层土壤水分等。这对于了解地球物理技术-电阻率层析成像法的发展态势具有一定的参考价值。
  • 图  1  年发文量图

    Figure  1.  The number of papers published each year

    图  2  ERT与土壤水文学相关研究的热点关键词共现时区分布图

    Figure  2.  The time zones for hot co-words network

    图  3  关键词共现突现分析的前14位关键词

    Figure  3.  The top 14 keywords from burst of Keyword co-occurrence analysis

    图  4  主要国家发文量年度变化情况

    Figure  4.  Annual changes of published papers in major countries

    图  5  国家合作图谱

    Figure  5.  National collaboration networks

    图  6  作者共被引网络图谱

    Figure  6.  Author co ~ citation networks

    图  7  发文机构合作图谱

    Figure  7.  Research institution’s collaboration networks

    图  8  关键词和研究方向聚类图

    Figure  8.  Keywords and research direction cluster diagram

    图  9  ERT在土壤水文学领域的研究总概况图

    Figure  9.  The total overview diagram related with ERT in pedo-hydrology

    表  1  1992—2020年词频前20位的关键词

    Table  1.   The top 20 leywords in words frequency from 1992 to 2020

    1992—2000 a2000—2010 a2010—2020 a
    位序
    Order
    词频
    frequency
    中心性
    centrality
    关键词
    keyword
    词频
    frequency
    中心性
    centrality
    关键词
    keyword
    词频
    frequency
    中心性
    centrality
    关键词
    keyword
    1 4 0 ICT
    (阻抗计算机断层摄影术)
    54 0.28 ERT
    (电阻率层析成像法)
    159 0.08 soil water content
    (土壤含水量)
    2 2 0 Inversion
    (反演)
    33 0.18 inversion
    (反演)
    144 0.06 ERT
    (电阻率层析成像法)
    3 1 0 yucca mountain
    (尤卡山)
    33 0.05 soil water content
    (土壤含水量)
    131 0.33 inversion
    (反演)
    4 1 0 XCT
    (x射线计算机层析摄影术)
    22 0.24 preferential flow
    (优先流)
    115 0.15 soil
    (土壤)
    5 1 0 Hydrological
    (水文学的)
    21 0.06 solute transport
    (溶质运移)
    94 0.1 GPR
    (探地雷达)
    6 1 0 undisturbed soil core
    (原状土芯)
    30 0.31 GPR
    (探地雷达)
    79 0.06 preferential flow
    (优先流)
    7 1 0.01 field test
    (现场实验)
    18 0.08 Model
    (模型、模拟)
    72 0.05 solute transport
    (溶质运移)
    8 1 0 saturated fractured tuff
    (饱和的凝灰岩)
    13 0.03 hydraulic conductivity
    (导水率)
    69 0.06 area
    (区域)
    9 1 0 driven hydrothermal flow
    (驱动的热液流)
    13 0.01 vadose zone
    (包气带)
    63 0.04 model
    (模型、模拟)
    10 1 0 Transferfunction
    (运移)
    11 0.13 Soil
    (土壤)
    53 0.1 conductivity
    (电导率)
    11 1 0 Thermal
    (热气流)
    8 0.03 TDR
    (时域反射仪)
    45 0.13 Groundwater
    (地下水)
    12 1 0 Resistivity
    (电阻率)
    7 0.09 unsaturated flow
    (非饱和流)
    43 0.11 vadose zone
    (包气带)
    13 1 0 Nevada
    (内华达)
    6 0.06 area
    (区域)
    38 0.06 Surface
    (表面)
    14 1 0.03 Conductivity
    (电导率)
    6 0.07 System
    (系统)
    30 0.09 aquifer
    (蓄水层)
    15 1 0 solute transport
    (溶质运移)
    5 0.01 conductivity
    (电导率)
    29 0.06 Geophysics
    (地球物理)
    16 1 0 breakthrough curve
    (穿透曲线)
    5 0.06 Infiltration
    (渗透)
    24 0.05 infiltration
    (渗透)
    17 1 0 Repository
    (资源库)
    4 0.01 Dispersion
    (离散)
    24 0.05 System
    (系统)
    18 1 0 hydraulic conductivity
    (导水率)
    4 0.12 Climate
    (气候)
    23 0.07 Landslide
    (滑坡)
    19 1 0.01 fractured rock
    (岩石断裂)
    4 0 Resolution
    (分辨率)
    22 0.03 Dynamics
    (动力学)
    20 4 0.04 geophysical method
    (地球物理法)
    21 0.04 Depth
    (深度)
    下载: 导出CSV

    表  2  频次位于前六位的国家统计

    Table  2.   The top six countries in frequency

    国家
    Country
    美国
    USA
    法国
    France
    德国
    Germany
    意大利
    Italy
    中国
    China
    英国
    Britain
    频次 122 99 94 93 35 31
    发文量 142 116 104 112 46 57
    中心性 0.35 0.23 0.38 0.45 0.08 0.08
    下载: 导出CSV

    表  3  机构合作频次排名前10的研究机构和作者共被引前20的研究作者统计

    Table  3.   Statistics of the top 10 institutions and the top 20 authors in citation frequency

    位序
    Order
    频次
    Frequency
    研究机构
    Research Institute
    位序
    Order
    频次
    Frequency
    作者
    Author
    年份
    Year
    1 31 Univ Padua 帕多瓦大学 1 363 Loke M. H 2003
    2 30 Univ Lancaster 兰卡斯特大学 2 191 Andrew Binley 2002
    3 16 Forschungszentrum Julich 德国于利希研究中心 3 165 Archie G. E 2008
    4 15 British Geol Survey 英国地质调查 4 141 Dahlin T 2008
    5 13 Lawrence Berkeley Natl Lab 劳伦斯伯克利国家实验室 5 121 Daily W 2002
    6 9 Chinese Acad Sci 中国科学院 6 116 Anatja Samoulian 2009
    6 9 Univ Calgary 卡尔加里大学 7 100 Cassiani Giorgio 2008
    6 9 CNR 法国国家研究委员会 7 100 Michot Didier 2007
    7 7 ETH 苏黎世联邦理工大学 8 96 Slater L 2008
    8 6 Univ Bonn 德国波恩大学 9 89 Kemna Andreas 2004
    8 6 Swiss Fed Inst Technol 瑞士联邦技术研究所 10 88 LaBrecque,Douglas 2004
    9 5 Univ Wyoming 怀俄明大学 11 87 Singha Kamini 2005
    9 5 Natl Res Inst Astron & Geophys
    埃及开罗天文与地球物理研究所
    12 85 Revil A 2008
    9 5 Univ Lisbon 里斯本大学 13 70 Chambers J. E 2008
    10 4 Univ Roma La Sapienza 意大利罗马大学 14 62 Zhou Qi You 2003
    10 4 Univ Lausanne 洛桑大学 15 60 Waxman M. H 2012
    10 4 Colorado Sch Mines 科罗拉多矿业学院 16 59 Anonymous 2002
    10 4 Univ Strasbourg 斯特拉斯堡大学 17 57 Gunther T 2012
    10 4 Univ Paris 巴黎大学 18 55 Griffiths D. H 2002
    10 4 Texas A&M Univ 德克萨斯农工大学 19 49 Vangenuchten M. T 2008
    10 4 Univ Arizona 亚利桑那大学 19 49 Hayley, Kevin 2011
    10 4 Univ Copenhagen 哥本哈根大学 19 49 Keller G. V 2003
    10 4 Leibniz Inst Appl Geophys 莱布尼兹应用地球物理学 19 49 Vereecken, Harry 2013
    10 4 Univ Cagliari 卡利亚里大学 20 47 Garre S 2008
    下载: 导出CSV

    表  4  聚类网络中前8个最大的共引文献聚类

    Table  4.   The top 8 co-citation clusters in the clustering network

    聚类编号
    Cluster ID
    大小
    Size
    轮廓值
    Silhouette
    平均年份
    Mean
    (year)
    整个网络占比%
    % of the network
    累积占比%
    Accumulated % of network
    起始年份
    From-To
    持续年份
    Duration
    主题
    Theme
    #0 129 0.666 2011 16.65 16.65 2002—2020 19 irrigation 灌溉
    #1 108 0.795 2005 13.94 30.58 1996—2015 20 hydrogeophysics 水文地球物理
    #2 91 0.763 2013 11.74 42.32 2005—2020 26 resistivity monitoring 电阻率监测
    #3 76 0.792 2014 9.81 52.13 2008—2020 13 mediterranean forests 地中海森林
    #4 60 0.745 2012 7.75 59.87 2007—2017 11 texas 德克萨斯州
    #5 49 0.866 2012 6.32 66.19 2006—2019 14 electromagnetic induction 电磁感应
    #6 45 0.853 2008 5.81 72.00 2004—2013 10 groundwater salinity 地下水矿化度
    #7 42 0.860 2011 5.42 77.42 2004—2017 14 permafrost 永久冻土
    #8 37 0.911 2013 4.77 82.19 2007—2018 12 critical zone 关键带
    下载: 导出CSV

    表  5  知识基础论文(高被引论文)

    Table  5.   Knowledge base papers (highly co-citation papers)

    中心性
    Centrality
    第一作者
    First author
    年份
    Year
    出版物
    Publication
    频次
    Frequency
    所属聚类
    Cluster
    0.13 Loke M. H 2013 Journal of Applied Geophysics 42 2
    0.11 Pascal Brunet 2010 Journal of Hydrology 39 0
    0.08 Andrew Binley 2015 Water Resource Research 37 4
    0.06 Srayeddin Iyad 2009 Plant Soil 37 0
    0.45 Beff L 2013 Hydrology and Earth System Sciences 35 0
    0.02 Singha Kamini 2005 Water Resource Research 31 1
    0.25 Hinnell A. C 2010 Water Resource Research 28 1
    0.05 Cassiani Giorgio 2006 Journal of Applied Geophysics 26 1
    0.09 Anatja Samoulian 2005 Soil and Tillage Research 24 0
    0.23 Day ~ Lewis Frederick D 2005 Journal of Geophysical Research 24 1
    0.04 Michot Didier 2003 Water Resource Research 24 0
    0.14 Kemna Andreas 2002 Journal of Hydrology 24 1
    0.17 Garre S 2011 Vadose Zone Journal 22 0
    0.38 Chambers J. E 2014 Near Surface Geophysics 21 2
    0 Andrew Binley 2005 Water Science and Technology Library 20 1
    下载: 导出CSV
  • [1] 肖洪浪, 李锦秀, 赵良菊, 等. 土壤水异质性研究进展与热点[J]. 地球科学进展, 2007, 22(9): 954 − 959. doi: 10.3321/j.issn:1001-8166.2007.09.009
    [2] Tuttle S E, Salvucci G D. A new approach for validating satellite estimates of soil moisture using large-scale precipitation: Comparing AMSR-E products[J]. Remote sensing of environment, 2014, 142: 207 − 222. doi: 10.1016/j.rse.2013.12.002
    [3] 阳园燕, 郭安红, 安顺清, 等. 土壤-植物-大气连续体(SPAC)系统中植物根系吸水模型研究进展[J]. 气象科技, 2004, (5): 316 − 321. doi: 10.3969/j.issn.1671-6345.2004.05.003
    [4] 朱首军, 丁艳芳, 薛泰谦. 土壤-植物-大气(SPAC)系统和农林复合系统水分运动研究综述[J]. 水土保持研究, 2000, (1): 49 − 53. doi: 10.3969/j.issn.1005-3409.2000.01.013
    [5] Goldsmith G R. Changing directions: the atmosphere–plant–soil continuum[J]. New phytologist, 2013, 199,(1): 4 − 6. doi: 10.1111/nph.12332
    [6] 冯广龙, 刘昌明, 王 立. 土壤水分对作物根系生长及分布的调控作用[J]. 生态农业研究, 1996, 7(3): 7 − 11.
    [7] Lin H. Hydropedology Synergistic intergistic of pedology and hydrology[J]. Vadose Zone Journal, 2003, 1(2): 1.
    [8] Vereecken H, Huisman J A, Pachepsky Y, et al. On the spatio-temporal dynamics of soil moisture at the field scale[J]. Journal of Hydrology, 2014, 516: 76 − 96. doi: 10.1016/j.jhydrol.2013.11.061
    [9] Wang T, Franz T E, Li R, et al. Evaluating climate and soil effects on regional soil moisture spatial variability using EOFs[J]. Water Resources Research, 2017, 53(5): 4022 − 4035. doi: 10.1002/2017WR020642
    [10] Koumanov K S, Hopmans J W, Schwankl L W. Spatial and temporal distribution of root water uptake of an almond tree under microsprinkler irrigation[J]. Irrigation science, 2006, 24(4): 267 − 278. doi: 10.1007/s00271-005-0027-3
    [11] Walker J P, Willgoose G R, Kalma J D. In situ measurement of soil moisture: a comparison of techniques[J]. Journal of Hydrology, 2004, 293(1): 85 − 99.
    [12] Robinson D A, Jones S B, Wraith J M, et al. A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry[J]. Vadose Zone Journal, 2003, 2(4): 444 − 475. doi: 10.2136/vzj2003.4440
    [13] Topp G C. Electromagnetic determination of soil water content: measurements in coaxial transmission lines[J]. Water Resources Research, 1980, 16(3): 574 − 582. doi: 10.1029/WR016i003p00574
    [14] Roth K. Steady State Flow in an Unsaturated, Two-Dimensional, Macroscopically Homogeneous, Miller‐Similar Medium[J]. Water Resources Research, 1995, 31(9): 2127 − 2140. doi: 10.1029/95WR00946
    [15] 张学礼, 胡振琪, 初士立. 土壤含水量测定方法研究进展[J]. 土壤通报, 2005, 36(1): 118 − 123. doi: 10.3321/j.issn:0564-3945.2005.01.034
    [16] Verstraeten W W, Veroustraete F, Feyen J. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation[J]. Sensors (Basel), 2008, 8(1): 70 − 117. doi: 10.3390/s8010070
    [17] Bai X, Zhang L, He C, et al. Estimating Regional Soil Moisture Distribution Based on NDVI and Land Surface Temperature Time Series Data in the Upstream of the Heihe River Watershed, Northwest China[J]. Remote Sensing, 2020, 12(15): 2414. doi: 10.3390/rs12152414
    [18] 潘 宁, 王 帅, 刘焱序, 等. 土壤水分遥感反演研究进展[J]. 生态学报, 2019, 39(13): 4615 − 4626.
    [19] Petropoulos G P, Ireland G, Barrett B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends[J]. Physics and Chemistry of the Earth, 2015, 83-8: 36 − 56.
    [20] 杨大文, 丛振涛, 尚松浩, 等. 从土壤水动力学到生态水文学的发展与展望[J]. 水利学报, 2016, 47(3): 390 − 397.
    [21] 李小雁. 水文土壤学面临的机遇与挑战[J]. 地球科学进展, 2012, 27(5): 557 − 562.
    [22] Binley A, Hubbard S S, Huisman J A, et al. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales[J]. Water Resources Research, 2015, 51(6): 3837 − 3866. doi: 10.1002/2015WR017016
    [23] Huisman J A, Hubbard S S, Redman J D, et al. Measuring soil water content with ground penetrating radar: a review[J]. Vadose Zone Journal, 2003, 2: 476 − 491.
    [24] Huisman J A, Snepvangers J J J C, Bouten W, et al. Mapping spatial variation in surface soil water content: comparison of ground-penetrating radar and time domain reflectometry[J]. Journal of Hydrology (Amsterdam), 2002, 269(3): 194 − 207.
    [25] Looms M C, Hansen T M, Cordua K S, et al. Geostatistical inference using crosshole ground-penetrating radar[J]. Geophysics, 2010, 75(6): J29 − J41. doi: 10.1190/1.3496001
    [26] Pohlmeier A, Oros-Peusquens A, Javaux M, et al. Changes in Soil Water Content Resulting from Ricinus Root Uptake Monitored by Magnetic Resonance Imaging[J]. Vadose Zone Journal, 2008, 7(3): 1 − 8.
    [27] Boaga J. The use of FDEM in hydrogeophysics: A review[J]. Journal of Applied Geophysics, 2017, 13: 36 − 46.
    [28] Cassiani G, Ursino N, Deiana R, et al. Noninvasive Monitoring of Soil Static Characteristics and Dynamic States: A Case Study Highlighting Vegetation Effects on Agricultural Land[J]. Vadose Zone Journal, 2012, 1(3): J2011 − J2195.
    [29] Beff L, Günther T, Vandoorne B, et al. Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography[J]. Hydrology and Earth System Sciences, 2013, 7(2): 595 − 609.
    [30] Brunet P, Clément R, Bouvier C. Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)–A case study in the Cevennes area, France[J]. Journal of Hydrology (Amsterdam), 2010, 80(1-2): 146 − 153.
    [31] Binley A, Slater L D, Fukes M, et al. Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone[J]. Water Resources Research, 2005, 1(12): 0043 − 1397.
    [32] Michot D, Benderitter Y, Dorigny A, et al. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography [J]. Water Resources Research, 2003, 9(5): SBH 14/1-SBH 14/20.
    [33] Loke M H, Chambers J E, Rucker D F, et al. Recent developments in the direct-current geoelectrical imaging method[J]. Journal of Applied Geophysics, 2013, 5: 135 − 156.
    [34] 朱 亮, 孟宪学. 文献计量法与内容分析法比较研究[J]. 图书馆工作与研究, 2013, (6): 64 − 66. doi: 10.3969/j.issn.1005-6610.2013.06.017
    [35] 李海亮. 秦岭北麓华北落叶松人工林生态系统生态化学计量学研究[D]. 咸阳: 西北农林科技大学, 2018.
    [36] 邱均平. 信息计量学(四): 第四讲 文献信息离散分布规律—布拉德福定律[J]. 情报理论与实践, 2000, (4): 314 − 315.
    [37] 陈 悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242 − 253. doi: 10.3969/j.issn.1003-2053.2015.02.009
    [38] 陈 悦, 刘则渊, 陈 劲, 等. 科学知识图谱的发展历程[J]. 科学学研究, 2008, (3): 449 − 460.
    [39] Chen C. Science Mapping: A Systematic Review of the Literature[J]. Journal of Data and Information Science, 2017, 2(2): 1 − 40. doi: 10.1515/jdis-2017-0006
    [40] Kleinberg J, Tardos E. Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields[J]. Journal of the Acm, 2002, (49): 616 − 639.
    [41] Koestel J, Kemna A, Javaux M, et al. Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR[J]. Water Resources Research, 2008, 4(12): W12411.
    [42] Guo L, Mount G J, Hudson S, et al. Pairing geophysical techniques improves understanding of the near-surface Critical Zone: Visualization of preferential routing of stemflow along coarse roots[J]. Geoderma, 2020, 57: 113953.
    [43] Yeh T, Liu S, Glass R J, et al. A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology[J]. Water Resources Research, 2002, 8(12): 14 − 1-14-13.
    [44] Singha K, Day-Lewis F D, Johnson T, et al. Advances in interpretation of subsurface processes with time-lapse electrical imaging[J]. Hydrological Processes, 2015, 9(6): 1549 − 1576.
    [45] Hinnell A C, Ferré T P A, Vrugt J A, et al. Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion[J]. Water Resources Research, 2010, 6(4): W00D40.
    [46] Werban U, Attia Al Hagrey S, Rabbel W. Monitoring of root-zone water content in the laboratory by 2D geoelectrical tomography[J]. Journal of Plant Nutrition and Soil Science, 2008, 71(6): 927 − 935.
    [47] 彭新华, 王云强, 贾小旭, 等. 新时代中国土壤物理学主要领域进展与展望[J]. 土壤学报, 2020, 7(5): 1071 − 1087.
    [48] Koestel J, Vanderborght J, Javaux M, et al. Noninvasive 3-D Transport Characterization in a Sandy Soil Using ERT: 1. Investigating the Validity of ERT-derived Transport Parameters[J]. Vadose Zone Journal, 2009, (3): 711 − 722.
    [49] Zenone T, Morelli G, Teobaldelli M, et al. Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations[J]. Functional Plant Biology, 2008, 5(10): 1047 − 1058.
    [50] Neumann R B, Cardon Z G. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies[J]. New Phytologist, 2012, 94(2): 337 − 352.
    [51] Wehrer M, Slater L D. Characterization of water content dynamics and tracer breakthrough by 3-D electrical resistivity tomography (ERT) under transient unsaturated conditions[J]. Water Resources Research, 2015, 1(1): 97 − 124.
    [52] Uhlemann S, Chambers J, Wilkinson P, et al. Four-dimensional imaging of moisture dynamics during landslide reactivation[J]. Journal of Geophysical Research:Earth Surface, 2017, 22(1): 398 − 418.
    [53] Konapala G, Kao S. C, Addor N. Exploring Hydrologic Model Process Connectivity at the Continental Scale Through an Information Theory Approach[J]. Water Resources Research, 2020, 56: e2020WR027340.
    [54] 荣 易, 秦成新, 孙 傅, 等. 中国SWAT模型评估验证过程评价[J]. 环境科学研究, 2020: 1 − 14.
    [55] Meyerhoff S B, Maxwell R M, Revil, André, et al. Characterization of groundwater and surface water mixing in a semiconfined karst aquifer using time‐lapse electrical resistivity tomography[J]. Water Resources Research, 2014, 50(3): 2566 − 2585. doi: 10.1002/2013WR013991
    [56] 邱 瑾. 综述普赖斯对文献计量学的贡献[J]. 群文天地, 2010, (12): 116.
    [57] 马东豪, 张佳宝, 吴忠东, 等. 电阻率成像法在土壤水文学研究中的应用及进展[J]. 土壤学报, 2014, 51(3): 439 − 447.
    [58] Samoulian A, Cousin I, Richard G, et al. Electrical Resistivity Imaging for Detecting Soil Cracking at the Centimetric Scale[J]. Soil Science Society of America Journal, 2003, 67(5): 1319 − 1326. doi: 10.2136/sssaj2003.1319
    [59] 李 杰, 李生才, 冯长根. 《安全与环境学报》2007—2017年文献计量分析[J]. 安全与环境学报, 2019, 19(3): 1092 − 1100.
    [60] Doetsch J, Linde N, Pessognelli M, et al. Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization[J]. Journal of Applied Geophysics, 2012, 78: 68 − 76. doi: 10.1016/j.jappgeo.2011.04.008
    [61] Loke M H, Barker R D. Practical techniques for 3D resistivity surveys and data inversion[J]. Geophysical Prospecting, 1996, 44(3): 499 − 523. doi: 10.1111/j.1365-2478.1996.tb00162.x
    [62] Karaoulis M C, Kim J H, Tsourlos P I. 4D active time constrained resistivity inversion[J]. Journal of applied geophysics, 2011, 73(1): 25 − 34. doi: 10.1016/j.jappgeo.2010.11.002
    [63] Day-Lewis F D, Singha K, Binley M. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations[J]. Journal of Geophysical Research, 2005, 110: B08206.
    [64] Srayeddin I, Doussan C. Estimation of the spatial variability of root water uptake of maize and sorghum at the field scale by electrical resistivity tomography[J]. Plant and Soil, 2009, 319(1-2): 185 − 207. doi: 10.1007/s11104-008-9860-5
    [65] Vereecken H, Huisman J A, Hendricks Franssen H J, et al. Soil hydrology: Recent methodological advances, challenges, and perspectives[J]. Water resources research, 2015, 51(4): 2616 − 2633. doi: 10.1002/2014WR016852
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  67
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-27
  • 修回日期:  2021-08-24
  • 刊出日期:  2021-12-08

目录

    /

    返回文章
    返回