留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同管理模式对废弃宅基地复垦杨树林地土壤的粒径分形特征的影响

孟婷婷 刘泽鑫 刘峰 刘金宝 张国剑 吉亚飞

孟婷婷, 刘泽鑫, 刘 峰, 刘金宝, 张国剑, 吉亚飞. 不同管理模式对废弃宅基地复垦杨树林地土壤的粒径分形特征的影响[J]. 土壤通报, 2021, 52(6): 1299 − 1307 doi: 10.19336/j.cnki.trtb.2021052701
引用本文: 孟婷婷, 刘泽鑫, 刘 峰, 刘金宝, 张国剑, 吉亚飞. 不同管理模式对废弃宅基地复垦杨树林地土壤的粒径分形特征的影响[J]. 土壤通报, 2021, 52(6): 1299 − 1307 doi: 10.19336/j.cnki.trtb.2021052701
MENG Ting-ting, LIU Ze-xin, LIU Feng, LIU Jin-bao, ZHANG Guo-jian, JI Ya-fei. The Influence of Different Management Modes on the Fractal Characteristics of Soil Particle Size of Reclaimed Poplar Forest Land in Abandoned Homestead[J]. Chinese Journal of Soil Science, 2021, 52(6): 1299 − 1307 doi: 10.19336/j.cnki.trtb.2021052701
Citation: MENG Ting-ting, LIU Ze-xin, LIU Feng, LIU Jin-bao, ZHANG Guo-jian, JI Ya-fei. The Influence of Different Management Modes on the Fractal Characteristics of Soil Particle Size of Reclaimed Poplar Forest Land in Abandoned Homestead[J]. Chinese Journal of Soil Science, 2021, 52(6): 1299 − 1307 doi: 10.19336/j.cnki.trtb.2021052701

不同管理模式对废弃宅基地复垦杨树林地土壤的粒径分形特征的影响

doi: 10.19336/j.cnki.trtb.2021052701
基金项目: 陕西省技术创新引导专项(2021CGBX-03)及陕西地建-西安交大土地工程与人居环境开放基金(2021WHZ0088)资助
详细信息
    作者简介:

    孟婷婷(1992−),女,河南商丘人,硕士,工程师,主要从事土地整治工程研究。E-mail:1498643610@qq.com

    通讯作者:

    E-mail: jinbaoliu@xaut.edu.cn

  • 中图分类号: S15

The Influence of Different Management Modes on the Fractal Characteristics of Soil Particle Size of Reclaimed Poplar Forest Land in Abandoned Homestead

  • 摘要: 探究废弃宅基地复垦为杨树林地在不同管理措施下的土壤粒径分布及其分形特征,为科学指导建设用地土壤修复提供理论依据。在陕西省咸阳市渭城区建立废弃农村宅基地复垦为杨树林地的试验区,试验设对照(未扰动)、灌溉、施肥灌溉和自然生长4个处理;自各处理区采集土样,测定土壤机械组成,探讨不同管理模式下土壤粒径分布的分形特征。结果表明,土壤黏粒、粉粒、砂粒含量对照分别为14.58%、81.21%、4.22%,自然生长处理为14.08%、79.92%、5.99%,灌溉处理为15.17%、81.19%、3.64%,施肥灌溉处理为16.75%、80.20%、3.05%;各处理土壤体积分形维数D取值在2.721 ~ 2.808范围内,且与黏粒含量、多重分形维数(D0 D10D−10D0)呈显著正相关(P < 0.05),与砂粒含量呈显著负相关(P < 0.05)。土壤粗糙度按灌溉、施肥灌溉和自然生长、对照处理顺序逐渐降低,土壤质地均匀性按施肥灌溉、灌溉、自然生长、对照处理顺序逐渐减小,土壤整体分形结构按对照、灌溉、自然生长、施肥灌溉处理顺序逐渐简化。由此可以认为灌溉和施肥灌溉模式可使宅基地复垦为杨树林地后的土壤质地得到较好改善;而土壤体积分形维数D可作为土壤质地量变化的衡量指标使用。
  • 图  1  土壤质地分布

    Figure  1.  Texture of analyzed soil samples

    图  2  不同管理模式下各土层粒径分布的广义维数谱q-D(q)曲线

    Figure  2.  Distribution of generalized dimension spectral curves q ~ D(q) of various layers of soil under different management modes

    图  3  不同管理模式下各土层粒径分布的多重分形奇异谱函数

    Figure  3.  Multi-fractal singular spectral function of soil particle size distribution under different management modes

    图  4  相关分析热图

    Figure  4.  Heat map of correlation analysis

    表  1  不同管理模式下土壤机械组成和土壤体积分形维数(D)

    Table  1.   Soil mechanical composition and single fractal dimension under different management modes

    管理模式
    Management mode
    深度(cm)
    Sampling depth
    黏粒 (%)
    Clay content
    粉粒 (%)
    Silt content
    砂粒 (%)
    Sand content
    D
    灌溉 0 ~ 20 10.77 ± 0.97 Ab 81.74 ± 6.39 Aa 7.5 ± 7.35 Aa 2.726 ± 0 Ac
    20 ~ 40 12.32 ± 2.41 Ab 81.72 ± 1.30 Aa 5.97 ± 3.71 Aa 2.755 ± 0.01 Ab
    40 ~ 60 14.85 ± 4.33 Aab 82.88 ± 2.49 Aa 2.28 ± 1.85 Aa 2.758 ± 0.01 Ab
    60 ~ 80 18.61 ± 1.55 Aa 80.26 ± 0.51 Aa 1.14 ± 1.04 Aa 2.808 ± 0.01 Aa
    80 ~ 100 19.30 ± 0.53 Aa 79.37 ± 1.29 Aa 1.34 ± 1.82 Aa 2.799 ± 0 Aa
    平均 15.17 ± 3.76 Ba 81.19 ± 1.38 Aa 3.65 ± 2.9 Ba 2.769 ± 0.03 Ab
    肥灌 0 ~ 20 11.27 ± 0.54 Ac 80.50 ± 0.01 Aabc 8.23 ± 0.52 Aa 2.721 ± 0.01 Ac
    20 ~ 40 14.49 ± 1.44Ac 84.07 ± 0.33Aa 1.45 ± 1.77Ab 2.748 ± 0Ab
    40 ~ 60 15.97 ± 2.23 Abc 82.36 ± 2.81 Aab 1.68 ± 0.59 Ab 2.781 ± 0 Aa
    60 ~ 80 22.06 ± 3.16 Aa 76.12 ± 3.45 Ac 1.83 ± 0.29 Ab 2.787 ± 0.01 Aa
    80 ~ 100 19.98 ± 1.31 Aab 77.97 ± 0.57 Abc 2.06 ± 1.87 Ab 2.789 ± 0 Aa
    平均 16.75 ± 4.31 Ab 80.2 ± 3.22 Ba 3.05 ± 2.9 Bb 2.765 ± 0.03 Ab
    自然生长 0 ~ 20 12.01 ± 7.98 Aa 78.82 ± 3.79 Aa 9.18 ± 11.77 Aa 2.713 ± 0.07 Bc
    20 ~ 40 10.23 ± 4.42 Aa 78.74 ± 7.09 Aa 11.04 ± 11.50 Aa 2.721 ± 0.03 Bc
    40 ~ 60 13.37 ± 0.86 Aa 81.74 ± 1.51 Aa 4.90 ± 2.37 Aa 2.744 ± 0.01 Bb
    60 ~ 80 16.27 ± 5.30 Aa 80.29 ± 0.74 Aa 3.45 ± 4.56 Aa 2.775 ± 0.03 Ba
    80 ~ 100 18.56 ± 0.29 Aa 80.03 ± 1.03 Aa 1.42 ± 1.32 Aa 2.787 ± 0 Ba
    平均 14.09 ± 3.33 Ba 79.92 ± 1.23 Ba 6 ± 4.01 Aa 2.748 ± 0.05 Bb
    未扰动 0 ~ 20 14.29 ± 1.20 Ab 81.15 ± 2.50 Aa 4.56 ± 3.70 Aa 2.753 ± 0.01 Bb
    20 ~ 40 14.58 ± 1.70 Ab 82.17 ± 0.60 Aa 3.26 ± 1.10 Aa 2.755 ± 0.01 Bb
    40 ~ 60 15.88 ± 1.77 Aa 82.28 ± 1.28 Aa 1.85 ± 0.49 Aa 2.767 ± 0.01 Ba
    60 ~ 80 14.46 ± 0.90 Ab 80.24 ± 1.29 Aa 5.31 ± 2.18 Aa 2.754 ± 0.01 Bb
    80 ~ 100 13.70 ± 2.43 Bc 80.20 ± 5.00 Aa 6.11 ± 7.39 Aa 2.747 ± 0.02 Bb
    平均 14.58 ± 0.8 Bb 81.2 ± 1 Aa 4.22 ± 1.69 Ba 2.755 ± 0.01 Bb
      注:不同大写字母表示同一土层,不同管理模式之间差异显著(P < 0.05);不同小写字母表示同一管理模式,不同土层之间差异显著(P < 0.05)。
    下载: 导出CSV

    表  2  多重分形维数参数

    Table  2.   Multifractal dimension parameters of soil particle size distribution under different management modes

    管理模式
    Management mode
    深度(cm)
    Sampling depth
    D0D1D2D−10D0D0D10D1/D0
    灌溉 0 ~ 20 0.725 ± 0.09 Cc 0.661 ± 0.16 Bc 0.633 ± 0.17 Bc 0.949 ± 0.61 Ab 0.133 ± 0.11 Aa 0.901 ± 0.11 Bb
    20 ~ 40 0.838 ± 0.05 Aa 0.782 ± 0.04 Aa 0.76 ± 0.03 Ca 1.037 ± 0.28 Aa 0.108 ± 0.02 Ab 0.933 ± 0.02 Ab
    40 ~ 60 0.834 ± 0.05 Aa 0.786 ± 0.04 Aa 0.764 ± 0.03 Aa 0.874 ± 0.24 Cc 0.103 ± 0.03 Bb 0.942 ± 0.01 Aa
    60 ~ 80 0.817 ± 0.01 Cb 0.772 ± 0.02 Bb 0.751 ± 0.02 Cb 0.899 ± 0.3 Bc 0.111 ± 0.02 Bb 0.944 ± 0.02 Ba
    80 ~ 100 0.813 ± 0.01 Cb 0.751 ± 0.01 Cb 0.726 ± 0 Cb 1.009 ± 0.08 Bb 0.135 ± 0.01 Ba 0.924 ± 0.01 Ab
    平均 0.806 ± 0.06 Bb 0.75 ± 0.08 Bb 0.727 ± 0.09 Bb 0.953 ± 0.33 Ab 0.118 ± 0.05 Ab 0.929 ± 0.05 Bb
    肥灌 0 ~ 20 0.817 ± 0 Bb 0.785 ± 0.02 Aa 0.768 ± 0.02 Aa 0.597 ± 0.19 Cc 0.063 ± 0.01 Cb 0.961 ± 0.02 Aa
    20 ~ 40 0.821 ± 0.01 Bb 0.776 ± 0.01 Ab 0.757 ± 0.01 Cb 0.81 ± 0.29 Bc 0.089 ± 0 Bb 0.945 ± 0.01 Ab
    40 ~ 60 0.832 ± 0.01 Aa 0.767 ± 0.01 Bb 0.741 ± 0.01 Bc 1.259 ± 0.1 Aa 0.156 ± 0.01 Aa 0.922 ± 0.01 Bc
    60 ~ 80 0.831 ± 0.01 Aa 0.772 ± 0 Bb 0.746 ± 0 Cc 1.051 ± 0.09 Ab 0.148 ± 0.01 Aa 0.928 ± 0 Cc
    80 ~ 100 0.83 ± 0.02 Ba 0.775 ± 0.01 Bb 0.741 ± 0.01 Bc 0.686 ± 0.29 Bc 0.154 ± 0.02 Aa 0.934 ± 0.02 Ac
    平均 0.826 ± 0.01 Ab 0.775 ± 0.01 Ab 0.751 ± 0.01 Ab 0.88 ± 0.32 Cb 0.122 ± 0.04 Ab 0.938 ± 0.02 Ab
    自然生长 0 ~ 20 0.838 ± 0.05 Aa 0.796 ± 0.04 Aa 0.779 ± 0.05 Aa 0.82 ± 0.45 Bc 0.101 ± 0.05 Bc 0.951 ± 0.04 Aa
    20 ~ 40 0.828 ± 0.01 Bc 0.789 ± 0.02 Aa 0.771 ± 0.02 Aa 0.646 ± 0.19 Cc 0.105 ± 0.03 Ac 0.953 ± 0.01 Aa
    40 ~ 60 0.834 ± 0.01 Ab 0.787 ± 0.01 Aa 0.768 ± 0.01 Ab 1.021 ± 0.22 Ba 0.089 ± 0.01 Bc 0.943 ± 0.01 Ab
    60 ~ 80 0.839 ± 0.04 Aa 0.78 ± 0.04 Bb 0.759 ± 0.04 Bb 0.93 ± 0.42 Bb 0.123 ± 0.02 Bb 0.93 ± 0.02 Cc
    80 ~ 100 0.825 ± 0.03 Ac 0.765 ± 0.02 Cc 0.742 ± 0.02 Bc 1.115 ± 0.31 Aa 0.14 ± 0.02 Ba 0.928 ± 0.01 Ac
    平均 0.833 ± 0.03 Ab 0.783 ± 0.03 Ab 0.764 ± 0.03 Ab 0.906 ± 0.35 Bb 0.111 ± 0.03 Ab 0.941 ± 0.02 Ab
    未扰动 0 ~ 20 0.823 ± 0.02 Bb 0.789 ± 0.02 Aa 0.774 ± 0.02 Aa 0.747 ± 0.4 Bc 0.066 ± 0.03 Cb 0.959 ± 0.03 Aa
    20 ~ 40 0.832 ± 0.01 Ab 0.783 ± 0.01 Ab 0.766 ± 0.01 Bb 1.003 ± 0.24 Ab 0.083 ± 0.02 Ba 0.941 ± 0.01 Ab
    40 ~ 60 0.824 ± 0.01 Ab 0.774 ± 0 Bb 0.758 ± 0 Ab 1.064 ± 0.24 Ba 0.087 ± 0.01 Ba 0.94 ± 0.01 Ab
    60 ~ 80 0.829 ± 0.01 Bb 0.797 ± 0.01 Aa 0.781 ± 0.01 Aa 0.928 ± 0.29 Bc 0.067 ± 0.02 Cb 0.962 ± 0.02 Aa
    80 ~ 100 0.85 ± 0.03 Aa 0.794 ± 0.04 Aa 0.777 ± 0.04 Aa 1.093 ± 0.14 Aa 0.091 ± 0.01 Ca 0.934 ± 0.01 Ab
    平均 0.831 ± 0.02 Ab 0.788 ± 0.02 Ab 0.771 ± 0.02 Ab 0.967 ± 0.28 Ab 0.079 ± 0.02 Bb 0.947 ± 0.02 Ab
      注:不同大写字母表示同一土层,不同管理模式差异显著(P < 0.05);不同小写字母表示同一管理模式,不同土层之间差异显著(P < 0.05)。
    下载: 导出CSV
  • [1] 程 杰, 马增辉, 张 露, 等. 黄土丘陵区空心村土地复垦后不同年限土壤肥力评价[J]. 水土保持研究, 2021, 28(2): 49 − 53.
    [2] 王东丽, 刘 阳, 郭莹莹, 等. 半干旱矿区排土场苜蓿恢复过程中土壤颗粒分形的演变特征[J]. 生态学报, 2020, 40(13): 4585 − 4593.
    [3] 宋 鸽, 史东梅, 蒋光毅, 等. 土壤管理措施对坡耕地侵蚀退化耕层的恢复作用[J]. 中国农业科学, 2021, 54(8): 1702 − 1714. doi: 10.3864/j.issn.0578-1752.2021.08.010
    [4] 刘 爽, 王 雅, 刘海龙, 等. 晋西北不同土地恢复管理措施下土壤物理性状分析[J]. 植物营养与肥料学报, 2019, 25(2): 235 − 244. doi: 10.11674/zwyf.18118
    [5] 孙 梅, 孙 楠, 黄运湘, 等. 长期不同施肥红壤粒径分布的多重分形特征[J]. 中国农业科学, 2014, 47(11): 2173 − 2181. doi: 10.3864/j.issn.0578-1752.2014.11.011
    [6] 郭岩松, 吕春娟, 郭星星, 等. 不同复垦措施下铁尾矿的土壤颗粒多重分形特征[J]. 土壤通报, 2019, 50(1): 81 − 88.
    [7] 黄文庆. 苏北石灰岩山地不同造林模式土壤效应研究[D]. 南京: 南京林业大学, 2014.
    [8] 濮阳雪华, 王月玲, 赵志杰, 等. 陕北黄土区不同植被恢复模式植被与土壤耦合关系研究[J]. 草业学报, 2021, 30(5): 13 − 24. doi: 10.11686/cyxb2020458
    [9] 许彦崟, 林 杰, 李建伟, 等. 漆树林5种种植模式下的土壤质量综合评价[J]. 西北林学院学报, 2021, 36(3): 74 − 80. doi: 10.3969/j.issn.1001-7461.2021.03.11
    [10] 姜仕昆, 周运超, 谭 伟, 等. 马尾松林近自然不同经营管理措施下土壤肥力[J]. 浙江农林大学学报, 2020, 37(5): 876 − 882. doi: 10.11833/j.issn.2095-0756.20190549
    [11] 李庆昕. 大凌河流域不同植被类型土壤粒径的多重分形特征分析[J]. 黑龙江水利科技, 2018, 46(9): 5 − 10. doi: 10.3969/j.issn.1007-7596.2018.09.003
    [12] 张海廷, 时延庆. 山东省不同土地利用方式土壤颗粒组成及其分形维数特征[J]. 水土保持研究, 2018, 25(1): 126 − 131.
    [13] Qiao J B, Zhu Y J, Jia X X, et al. Multifractal characteristics of particle size distributions (50–200 m) in soils in the vadose zone on the Loess Plateau, China[J]. Soil & Tillage Research, 2021, 205: 104786.
    [14] 代豫杰. 沙生灌木林对土壤颗粒多重分形与元素特征的影响[D]. 泰安: 山东农业大学, 2018.
    [15] 林立文, 邓羽松, 杨钙仁, 等. 南亚热带不同林分土壤颗粒分形与水分物理特征[J]. 生态学杂志, 2020, 39(4): 1141 − 1152.
    [16] Scott W T, Stephen W W. Fractal scaling of soil particle-size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362 − 369. doi: 10.2136/sssaj1992.03615995005600020005x
    [17] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896 − 1899. doi: 10.3321/j.issn:0023-074X.1993.20.010
    [18] 茹 豪, 张建军, 李玉婷, 等. 黄土高原土壤粒径分形特征及其对土壤侵蚀的影响[J]. 农业机械学报, 2015, 46(4): 176 − 182. doi: 10.6041/j.issn.1000-1298.2015.04.026
    [19] Wang D, Fu B, Zhao W, et al. Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau, China[J]. Catena, 2007, 72(1): 29 − 36.
    [20] 罗雅曦, 刘任涛, 张 静, 等. 腾格里沙漠草方格固沙林土壤颗粒组成、分形维数及其对土壤性质的影响[J]. 应用生态学报, 2019, 30(2): 525 − 535.
    [21] Jing Z R, Wang J M, Wang R G, et al. Using multi-fractal analysis to characterize the variability of soil physical properties in subsided land in coal-mined area[J]. Geoderma, 2020, 361(C): 114054.
    [22] 管孝艳, 杨培岭, 吕 烨. 基于多重分形的土壤粒径分布与土壤物理特性关系[J]. 农业机械学报, 2011, 42(3): 44 − 50.
    [23] 柳妍妍, 胡玉昆, 公延明. 高寒草原不同退化阶段土壤颗粒分形特征[J]. 水土保持通报, 2013, 33(5): 138 − 142.
    [24] 孙 哲, 王一博, 刘国华, 等. 基于多重分形理论的多年冻土区高寒草甸退化过程中土壤粒径分析[J]. 冰川冻土, 2015, 37(4): 980 − 990.
    [25] Miranda J G V, Montero E, Alves M C, et al. Multifractal characterization of saprolite particle-size distributions after topsoil removal[J]. Geoderma, 2006, 134(3-4): 373 − 385. doi: 10.1016/j.geoderma.2006.03.014
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  139
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27
  • 录用日期:  2021-11-19
  • 修回日期:  2021-11-07
  • 刊出日期:  2021-12-08

目录

    /

    返回文章
    返回