留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外源氮添加对土壤微生物残体积累动态的影响-基于Meta分析

陈奇 丁雪丽 张彬

陈 奇, 丁雪丽, 张 彬. 外源氮添加对土壤微生物残体积累动态的影响-基于Meta分析[J]. 土壤通报, 2021, 52(6): 1460 − 1472 doi: 10.19336/j.cnki.trtb.2021070601
引用本文: 陈 奇, 丁雪丽, 张 彬. 外源氮添加对土壤微生物残体积累动态的影响-基于Meta分析[J]. 土壤通报, 2021, 52(6): 1460 − 1472 doi: 10.19336/j.cnki.trtb.2021070601
CHEN Qi, DING Xue-li, ZHANG Bin. A meta-analysis of the responses of soil microbial residues to exogenous nitrogen addition[J]. Chinese Journal of Soil Science, 2021, 52(6): 1460 − 1472 doi: 10.19336/j.cnki.trtb.2021070601
Citation: CHEN Qi, DING Xue-li, ZHANG Bin. A meta-analysis of the responses of soil microbial residues to exogenous nitrogen addition[J]. Chinese Journal of Soil Science, 2021, 52(6): 1460 − 1472 doi: 10.19336/j.cnki.trtb.2021070601

外源氮添加对土壤微生物残体积累动态的影响-基于Meta分析

doi: 10.19336/j.cnki.trtb.2021070601
基金项目: 南京信息工程大学人才启动基金(2018r101)资助
详细信息
    作者简介:

    陈奇:陈 奇(1998−),女,安徽蚌埠人,硕士生,主要从事土壤微生物研究。E-mail: 1904857289@qq.com

    通讯作者:

    E-mail: bzhang@nuist.edu.cn

  • 中图分类号: S154.2:A

A meta-analysis of the responses of soil microbial residues to exogenous nitrogen addition

  • 摘要: 微生物残体是土壤有机碳库的重要贡献者。为明确外源氮添加对土壤微生物残体积累动态的影响,本文收集整理了1980—2020年已发表的文献,共选取122组试验观测数据,利用整合分析方法(Meta-analysis),以微生物残体标识物-氨基糖为目标组分,定量分析了不同种类和数量的外源氮添加对土壤中微生物来源细胞残体积累数量和组成比例的影响,并系统解析其主要影响因素。结果表明:外源氮添加(0 ~ 6000 kg hm−1)对微生物细胞残体的积累有显著的促进作用,并能引起土壤中真菌和细菌来源细胞残体相对比例发生明显变化。与不加氮对照相比,氮添加使土壤氨基糖总量增加27%,其中氨基葡萄糖、氨基半乳糖和胞壁酸含量分别增加22.5%、29.8%和19.0%。同时,不同种类外源氮素添加对氨基糖积累特征的影响也有所不同,表现为有机氮(如动物厩肥)比无机氮添加对氨基糖积累的促进作用更大。此外,氮添加对氨基糖的影响程度还与土壤自身的碳氮比、土地利用类型和自然降雨量等环境因子密切相关。其中是否添加碳源对微生物残体的响应有较大影响,表现为:无碳源添加会降低土壤氨基糖葡萄糖和胞壁酸对氮添加的响应,削弱了微生物残体对土壤有机质的贡献比例;而氮源同时配合碳源添加条件下,土壤氨基糖积累量显著高于单一氮源添加的处理,说明氮添加对微生物残体积累的影响存在着碳氮耦合效应。
  • 图  1  氮素添加对土壤氨基糖的影响

    括号内数字表示样本数,*表示在0.05水平上显著相关。

    Figure  1.  Effects of nitrogen addition on soil amino sugars

    图  2  氮添加数量对氨基糖的影响

    n表示样本数,R2表示拟合程度,P值表示显著性。

    Figure  2.  Effects of nitrogen addition amount on soil amino sugars

    图  3  添加不同种类氮素对土壤氨基糖的影响

    括号内数字表示样本数,*表示在0.05水平上显著相关。

    Figure  3.  Effects of different kinds of nitrogen on soil amino sugar

    图  4  不同土壤碳氮比条件下外源氮素添加对氨基糖的影响

    括号内数字表示样本数,*表示在0.05水平上显著相关。

    Figure  4.  Effects of exogenous nitrogen addition on amino sugars under different soil C / N ratios

    图  5  不同类型碳源底物条件下外源氮素添加对氨基糖的影响

    括号内数字表示样本数,*表示在0.05水平上显著相关。

    Figure  5.  Effects of exogenous nitrogen addition on amino sugars under different types of carbon source substrates

    图  6  不同试验方法下外源氮素添加对氨基糖的影响

    括号内数字表示样本数,*表示在0.05水平上显著相关。

    Figure  6.  Effects of exogenous nitrogen addition on amino sugar under different experimental methods

    图  7  外源氮素添加下降雨量对土壤氨基糖的影响

    n表示样本数,R2表示拟合程度,P值表示显著性。

    Figure  7.  Effects of exogenous nitrogen addition on soil amino sugar

    图  8  外源氮素添加下温度对土壤氨基糖的影响

    n表示样本数,R2表示拟合程度,P值表示显著性。

    Figure  8.  Effect of temperature on soil amino sugar under exogenous nitrogen addition

    表  1  数据分析所用文献

    Table  1.   The list of references associated with data analysis

    参考文献
    Reference
    地理位置
    Geographic location
    年均温度(℃)
    MAT
    年均降水量(mm)
    MAP
    培养时间
    Duration
    氮素类型
    Nitrogen type
    土壤类型
    Soil type
    丁雪丽等,2011[8] 41°49′N,123°34′E 266 d 有机无机氮混合
    (NH4+ + 秸秆)
    淋溶土
    丁雪丽等,2009[9] 43°36′N,124°40′E 266 d 有机无机氮混合
    (NH4+ + 秸秆)
    软土
    何红波等,2010[10] 43°34′N,124°38′E 126 d 无机氮
    (NH4+
    软土
    He et al,2011[11] 43°30′N,124°48′E 147 d 无机氮
    (NH4+
    软土
    He et al,2011[12] 43°31′N,124°49′E 147 d 无机氮
    (NH4+
    李晓波等,2011[7] 43°36′N,124°40′E 42 d 无机氮
    (Urea)
    软土
    Liang et al,2007[13] 28°46′N,115°50′E 210 d 无机氮
    (NH4+
    淋溶土
    Murugan et al,2013[14] 54°27′N,9°57′E 8.9 768 90 d 有机氮
    (牛浆)
    Chen et al,2020[15] 39°55′N,115°20′E 5.4 500 6 a 无机氮 淋溶土
    Chen et al,2020[16] 29°15′N,111°31′E 6 a 无机氮
    (NH4+
    Ding et al,2015[17] 47°26′N,126°38′E 1.5 550 11 a 有机无机氮混合
    (Urea + NH4+ + 粪肥)
    软土
    Ding et al,2013[18] 47°26′N,126°38′E 1.5 550 10 a 有机无机氮混合
    (Urea + NH4+ + 粪肥)
    软土
    Ding et al,2013[19] 47°26′N,126°38′E 1.5 550 18 a 有机无机氮混合
    (Urea + NH4+ + 粪肥)
    软土
    Ding et al,2013[6] 47°26′N,126°39′E 1.5 550 21 a 有机无机氮混合
    (Urea + NH4+ + 粪肥)
    软土
    Fan et al,2020[4] 26°11′N,117°28′E 19.4 1700 5.5 a 无机氮
    (NH4NO3
    氧化土
    Liu et al,2019[20] 41°31′N,123°24′E 7.5 700 1 a 有机无机氮混合
    (NH4+ + 秸秆)
    淋溶土
    Liang et al,2013[21] southern Wisconsin,USA 13.8 a 无机氮
    47°10′N,90°50′E
    Ma et al,2020[22] 18°43′N,108°53′E 19.7 2198 7 a 无机氮
    (NH4NO3
    始成土
    Peltre et al,2017[23] 55°40′N,12°16′E 12 a 有机氮
    (粪肥)
    淋溶土
    Zhang et al,2016[24] 23°10′N,112°10′E 11 a 无机氮
    (NH4NO3
    氧化土
    下载: 导出CSV
  • [1] Du E, Fenn M E, De Vries W, et al. Atmospheric nitrogen deposition to global forests: Status, impacts and management options. Environmental Pollution[J]. 2019, 250: 1044-1048.
    [2] Kästner M, Miltner A. SOM and Microbes-What Is Left From Microbial Life. The Future of Soil Carbon[J]. 2018, 125-163.
    [3] Zhang W, Zhang X C, Bai E, et al. The strategy of microbial utilization of the deposited N in a temperate forest soil[J]. Biology and Fertility of Soils, 2020, 56(3): 359 − 367. doi: 10.1007/s00374-019-01427-x
    [4] Fan Y X, Yang L M, Zhong X J, et al. N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest[J]. Geoderma, 2020: 375.
    [5] Liang C, Balser T C. Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool[J]. Nature Communications, 2012, 3: 1222. doi: 10.1038/ncomms2224
    [6] Ding X L, Han X Z, Zhng X D. Long-term impacts of manure, straw, and fertilizer on amino sugars in a silty clay loam soil under temperate conditions[J]. Biology and Fertility of Soils, 2013, 49(7): 949 − 954. doi: 10.1007/s00374-012-0768-0
    [7] 李晓波, 张 威, 田秋香, 等. 尿素向氨基糖的转化以及对土壤氨基糖库动态的影响[J]. 土壤学报, 2011, 48(6): 1189 − 1195. doi: 10.11766/trxb201101180027
    [8] 丁雪丽, 何红波, 张 彬, 等. 无机氮素加入量对玉米秸秆分解过程中棕壤氨基糖含量的影响[J]. 土壤学报, 2011, 48(3): 665 − 671. doi: 10.11766/trxb201003220099
    [9] 丁雪丽, 何红波, 白 震, 等. 不同供氮水平对施用玉米秸秆后黑土氨基糖转化的影响[J]. 应用生态学报, 2009, 20(9): 2207 − 2213.
    [10] 何红波, 李晓波, 张 威, 等. 葡萄糖和不同数量氮素供给对黑土氨基糖动态的影响[J]. 土壤学报, 2010, 47(4): 760 − 766. doi: 10.11766/trxb2010470423
    [11] He H B, Li X B, Zhang W, et al. Differentiating the dynamics of native and newly immobilized amino sugars in soil frequently amended with inorganic nitrogen and glucose[J]. European Journal of Soil Science, 2011, 62(1): 144 − 151. doi: 10.1111/j.1365-2389.2010.01324.x
    [12] He H B, Zhang W, Zhang X D, et al. Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation[J]. Soil Biology and Biochemistry, 2011, 43(6): 1155 − 1161. doi: 10.1016/j.soilbio.2011.02.002
    [13] Liang C, Zhang X D, Rubert K F, et al. Effect of plant materials on microbial transformation of amino sugars in three soil microcosms[J]. Biology and Fertility of Soils, 2007, 43(6): 631 − 639. doi: 10.1007/s00374-006-0142-1
    [14] Murugan R, Loges R, Taube F, et al. Specific response of fungal and bacterial residues to one-season tillage and repeated slurry application in a permanent grassland soil[J]. Applied Soil Ecology, 2013, 72: 31 − 40. doi: 10.1016/j.apsoil.2013.05.018
    [15] Chen J G, Ji C J, fang J Y, et al. Dynamics of microbial residues control the responses of mineral-associated soil organic carbon to N addition in two temperate forests[J]. Science of the Total Environment, 2020, 748: 141318. doi: 10.1016/j.scitotenv.2020.141318
    [16] Chen X B, Xia Y H, Hu Y J, et al. Effect of nitrogen fertilization on the fate of rice residue-C in paddy soil depending on depth: 13C amino sugar analysis[J]. Biology and Fertility of Soils, 2020, 54(4): 523 − 531.
    [17] Ding X L, Liang C, Zhang B, et al. Higher rates of manure application lead to greater accumulation of both fungal and bacterial residues in macroaggregates of a clay soil[J]. Soil Biology and Biochemistry, 2015, 84: 137 − 146. doi: 10.1016/j.soilbio.2015.02.015
    [18] Ding X L, Han X Z, Zhang X D, et al. Continuous manuring combined with chemical fertilizer affects soil microbial residues in a Mollisol[J]. Biology and Fertility of Soils, 2012, 49(4): 387 − 393.
    [19] Ding X L, Han X Z. Effects of long-term fertilization on contents and distribution of microbial residues within aggregate structures of a clay soil[J]. Biology and Fertility of Soils, 2013, 50(3): 549 − 554.
    [20] Liu X, Zhou F, Hu G Q, et al. Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching[J]. Geoderma, 2019, 333: 35 − 42. doi: 10.1016/j.geoderma.2018.07.017
    [21] Liang C, Duncan D S, Balser T C, et al. Soil microbial residue storage linked to soil legacy under biofuel cropping systems in southern Wisconsin, USA[J]. Soil Biology and Biochemistry, 2013, 57: 939 − 942. doi: 10.1016/j.soilbio.2012.09.006
    [22] Ma S H, Chen G P, Du E Z, et al. Effects of nitrogen addition on microbial residues and their contribution to soil organic carbon in China’s forests from tropical to boreal zone[J]. Environ Pollut, 2020, 268(Pt B): 115941.
    [23] Peltre C, Gregorich E G, Bruun S, et al. Repeated application of organic waste affects soil organic matter composition: Evidence from thermal analysis, FTIR-PAS, amino sugars and lignin biomarkers[J]. Soil Biology and Biochemistry, 2017, 104: 117 − 127. doi: 10.1016/j.soilbio.2016.10.016
    [24] Zhang W, Cui Y H, Lu X K, et al. High nitrogen deposition decreases the contribution of fungal residues to soil carbon pools in a tropical forest ecosystem[J]. Soil Biology and Biochemistry, 2016, 97: 211 − 214. doi: 10.1016/j.soilbio.2016.03.019
    [25] Lajeunesse M J. On the meta-analysis of response ratios for studies with correlated and multi-group designs[J]. Ecology, 2011, 92(11): 2049 − 2055. doi: 10.1890/11-0423.1
    [26] Curtis P S, Wang X Z. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology[J]. Oecologia, 1998, 113(3): 299 − 313. doi: 10.1007/s004420050381
    [27] 张彦军, 党水纳, 任媛媛, 等. 基于Meta分析的土壤呼吸对凋落物输入的响应[J]. 生态环境学报, 2020, 29(3): 447 − 456.
    [28] Xiao W, Chen X, Jing X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change[J]. Soil Biology and Biochemistry, 2018, 123: 21 − 32. doi: 10.1016/j.soilbio.2018.05.001
    [29] Mondini C, Cayuela M L, Sanchez-Monedero M A, et al. Soil microbial biomass activation by trace amounts of readily available substrate[J]. Biology and Fertility of Soils, 2006, 42(6): 542 − 549. doi: 10.1007/s00374-005-0049-2
    [30] Hoyle F C, Murphy D V, Brookes P C. Microbial response to the addition of glucose in low-fertility soils[J]. Biology and Fertility of Soils, 2008, 44: 571 − 579. doi: 10.1007/s00374-007-0237-3
    [31] Brant J B, Sulzman E W, Myrold D D. Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation[J]. Soil Biology and Biochemistry, 2006, 38: 2219 − 2232. doi: 10.1016/j.soilbio.2006.01.022
    [32] Ye G P, Lin Y X, Kuzyakov Y, et al. Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27-year field experiment[J]. Soil Biology & Biochemistry, 2019, 134: 15 − 24.
    [33] Glaser B, Turrion M B, Alef K. Amino sugars and muramic acid-biomarkers for soil microbial community structure analysis[J]. Soil Biology and Biochemistry, 2004, 36: 399 − 407. doi: 10.1016/j.soilbio.2003.10.013
    [34] Stevenson F J. Nitrogen in agricultural soils[J]. Madison: American Society of Agronomy, 1982.
    [35] Amelung W. Nitrogen biomarkers and their fate in soil[J]. Journal of Plant Nutrition and Science, 2003, 166: 677 − 686. doi: 10.1002/jpln.200321274
    [36] Wang S N, Tang J, Li Z Y, et al. Promoted Amino Sugar Accumulation in the Rhizosphere and Bulk Soil of a Paddy Field under Straw Application[J]. Applied Ecology and Environmental Research, 2020, 18(4): 5953 − 5964. doi: 10.15666/aeer/1804_59535964
    [37] 巨晓棠, 刘学军, 张福锁. 长期施肥对土壤有机氮组成的影响[J]. 中国农业科学, 2004, (1): 87 − 91. doi: 10.3321/j.issn:0578-1752.2004.01.014
    [38] Yu H Y, Ding W X, Luo J F, et al. Long-term application of organic manure and mineral fertilizers on aggregation and aggregate-associated carbon in a sandy loam soil[J]. Soil and Tillage Research, 2012, 124: 170 − 177. doi: 10.1016/j.still.2012.06.011
    [39] Tian J, Lou Y L, Gao Y, et al. Response of soil organic matter fractions and composition of microbial community to long-term organic and mineral fertilization[J]. Biology and Fertility of Soils, 2017, 53(5): 523 − 532. doi: 10.1007/s00374-017-1189-x
    [40] Trivedi P, Delgado-Baquerizo M, Jeffrie T C, et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content[J]. Environmental Microbiology, 2017, 19: 3070 − 3086. doi: 10.1111/1462-2920.13779
    [41] Zhang H J, Ding W X, Yu H Y, et al. Linking organic carbon accumulation to microbial community dynamics in a sandy loam soil: result of 20 years compost and inorganic fertilizers repeated application experiment[J]. Biology and Fertility of Soils, 2015, 51(2): 137 − 150. doi: 10.1007/s00374-014-0957-0
    [42] Jimenez M P, Horra A M, Pruzzo L, et al. Soil quality: a new index based on microbiological and biochemical parameter[J]. Biology and Fertility of Soils, 2002, 35: 302 − 306. doi: 10.1007/s00374-002-0450-z
    [43] Carpenter-Boggs L, Kennedy A C, Reganold J P. Organic and biodynamic management: effects on soil biology[J]. Soil Science Society of America Journal, 2000, 64: 1651 − 1659. doi: 10.2136/sssaj2000.6451651x
    [44] Peacock A D, Mullen M D, Ringelberg D B, et al. Soil microbial community responses to dairy manure or ammonium nitrate applications[J]. Soil Biology and Biochemistry, 2001, 33: 1011 − 1019. doi: 10.1016/S0038-0717(01)00004-9
    [45] Blagodatskaya E, Khomyakov N, Myachina O, et al. Microbial interactions affect sources of priming induced by cellulose[J]. Soil Biology and Biochemistry, 2014, 74: 39 − 49. doi: 10.1016/j.soilbio.2014.02.017
    [46] Joergensen R G, Mäder P, Fließbach A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism[J]. Biology and Fertility of Soils, 2010, 46: 303 − 307. doi: 10.1007/s00374-009-0433-4
    [47] Ding X L, He H B, Zhang B, et al. Plant-N incorporation into microbial amino sugars as affected by inorganic n addition: A microcosm study of n-15-labeled maize residue decomposition. Soil Biology and Biochemistry, 2011, 43(9): 1968-1974.
    [48] Cassman N A, Leite M F, Pan Y, et al. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland[J]. Scientific Reports, 2016, 6: 23680. doi: 10.1038/srep23680
    [49] Solomon D, Lehmann J, Zech W. Land use effects on amino sugar signature of chromic Luvisol in the semi-arid part of northern Tanzania[J]. Biology and Fertility of Soils 2001, 33: 33-40.
    [50] Zhang B, He H B, Ding X L, et al. Soil microbial community dynamics over a maize (Zea mays L.) growing season under conventional- and no-tillage practices in a rainfed agroecosystem[J]. Soil & Tillage Research, 2012, 124: 153 − 160.
    [51] 葛顺峰, 许海港, 季萌萌, 等. 土壤碳氮比对平邑甜茶幼苗生长和碳氮分配的影响[J]. 植物生态学报, 2013, 37(10): 942 − 949.
    [52] Mooshammer M, Wanek W, Zechmeister-Boltenstern S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources[J]. Frontiers in Microbiology, 2014, 5: 22.
    [53] Xia Y H, Chen X B, Hu Y J, et al. Contrasting contribution of fungal and bacterial residues to organic carbon accumulation in paddy soils across eastern China[J]. Biology and Fertility of Soils, 2019, 55: 767 − 776. doi: 10.1007/s00374-019-01390-7
    [54] Jia J, Feng X J, He J S, et al. Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland[J]. Soil Biology & Biochemistry, 2017, 104: 141 − 151.
    [55] 向元彬, 周世兴, 肖永翔, 等. 降雨量改变对常绿阔叶林干旱和湿润季节土壤呼吸的影响[J]. 生态学报, 2017, 37(14): 4734 − 4742.
    [56] 苏慧敏, 李叙勇, 欧阳扬. 土壤微生物量和土壤呼吸对降雨的响应[J]. 生态环境学报, 2011, 20(10): 1399 − 1402. doi: 10.3969/j.issn.1674-5906.2011.10.003
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  229
  • HTML全文浏览量:  235
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 修回日期:  2021-09-16
  • 刊出日期:  2021-12-08

目录

    /

    返回文章
    返回