留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维荧光光谱法在土壤溶解性有机质组分解析中的应用

敖静 王涛 常瑞英

敖 静, 王 涛, 常瑞英. 三维荧光光谱法在土壤溶解性有机质组分解析中的应用[J]. 土壤通报, 2022, 53(3): 738 − 746 doi: 10.19336/j.cnki.trtb.2021072302
引用本文: 敖 静, 王 涛, 常瑞英. 三维荧光光谱法在土壤溶解性有机质组分解析中的应用[J]. 土壤通报, 2022, 53(3): 738 − 746 doi: 10.19336/j.cnki.trtb.2021072302
AO Jing, WANG Tao, CHANG Rui-ying. Application of the Three-dimensional Excitation-emission Matrix Fluorescence Spectroscopy in the Analysis of Soil Dissolved Organic Matter Components[J]. Chinese Journal of Soil Science, 2022, 53(3): 738 − 746 doi: 10.19336/j.cnki.trtb.2021072302
Citation: AO Jing, WANG Tao, CHANG Rui-ying. Application of the Three-dimensional Excitation-emission Matrix Fluorescence Spectroscopy in the Analysis of Soil Dissolved Organic Matter Components[J]. Chinese Journal of Soil Science, 2022, 53(3): 738 − 746 doi: 10.19336/j.cnki.trtb.2021072302

三维荧光光谱法在土壤溶解性有机质组分解析中的应用

doi: 10.19336/j.cnki.trtb.2021072302
基金项目: 国家自然科学基金项目(41977398)和中国科学院青年创新促进会项目(2018406)资助
详细信息
    作者简介:

    敖静:敖 静(1997−),女,贵州铜仁人,在读硕士,主要研究氮沉降背景下土壤溶解性有机质组分变化。E-mail: aojing@imde.ac.cn

    通讯作者:

    E-mail: changruiying@imde.ac.cn

  • 中图分类号: S151.9;S153

Application of the Three-dimensional Excitation-emission Matrix Fluorescence Spectroscopy in the Analysis of Soil Dissolved Organic Matter Components

  • 摘要: 土壤溶解性有机质是具有较高化学和微生物活性的土壤有机质组分,其周转在维持土壤肥力和调节生态系统碳循环中发挥着核心作用,正确解析可溶性有机质的化学组分对深刻理解其生态环境效应具有重要意义。 论文旨在概述常见的土壤可溶性有机质组分分析方法,简要比较了常见的可溶性有机质化学组分分析技术,包括紫外-可见吸收光谱法、傅里叶红外光谱法、核磁共振法、傅里叶回旋共振质谱法和三维荧光光谱法的基本原理及技术优缺点,并着重对三维荧光光谱法在土壤可溶性有机质组分解析应用过程中的重要影响因素、常用荧光指标和数据处理方法进行了综述。三维荧光光谱法具有操作简便、仪器可及性高、成本低、通量高等特点,通过荧光指数、腐殖化指数及生物源指数等表征指标追溯土壤可溶性有机质的来源,结合平行因子分析法解析可溶性有机质化学组分及其对土地利用方式、耕种制度、全球变化因子的响应。但是,三维荧光光谱法也存在易受环境影响、解谱困难等局限性。未来研究亟需定量分析环境因素对可溶性有机质荧光特性的影响,并加强与其它分析技术和方法的联用,有助于更准确和全面地解析可溶性有机质,继而深入理解其生态环境效应。
  • 表  1  DOM组分分析常用方法对比

    Table  1.   Comparison of various instruments for analysis of DOM composition

    分析方法
    Method of analysis
    应用原理
    Application principle
    特点
    Characteristics
    局限
    Limitation
    紫外-可见吸收光谱(UV-Vis) 样品经紫外/可见光照射时,某些官能团中的价电子从低能级跃迁到高能级的过程中会吸收特定波长的光,从而形成光谱图 较早用于表征DOM光谱特征的方法之一,仪器普及率高、操作简便、分析快捷[23-24] 可直接获得的信息有限,多用紫外特征参数(如SUVA值、S值等)表征DOM芳香性、疏水性、腐殖化程度、分子量大小等信息[25],表征参数的适用范围和适用性有待深入探讨
    傅里叶红外光谱(FTIR) 基于物质分子化学键对红外光的选择性吸收,当红外辐射到被测样品时,一部分红外辐射会被官能团的特定共价键吸收,另一部分则直接穿透捕获到光谱 重复性好、信噪比好、分辨率高、杂散光影响小、光通量大[26-28] 通常需要把样品干燥并碾磨成固体粉末后测定,以避免水对红外光谱的吸收干扰测定[29];需对测定数据进行求导或去卷积处理从而解析光谱[30]
    核磁共振(NMR) 基于原子核的自旋运动,13C、1H等自旋量子数I(表示不同原子核的自旋运动情况)不为零的原子核在外界磁场会发生进动[31-33],在此过程中吸收与原子核进动频率相同的射频辐射发生塞曼分裂(原子的光谱线在外磁场中所出现的分裂),随后从自旋能级跃迁到塞曼能级,从而产生相应的核磁共振信号[31-32] 对样品无损耗、非侵入,可用于液态和固态样品的测定 仪器成本和维护费用较高,测定时需注意:利用1H-NMR测定样品所用的溶剂不可含H,以免干扰;样品检测前或需进行适当的提取分离等预处理手段[33]
    傅里叶变换离子回旋共振质谱(FT-ICR MS) 基于离子在均匀磁场中的回旋运动,当对离子施加与其回旋频率相同的射频时,离子受激发运动至半径较大的回旋轨道上,从而产生电流信号。采用的射频范围覆盖了样品测定的质量范围时,所有离子同时受到激发,检测得到的信号经傅里叶变换即可转换为质谱图 [34-35] 具有超高的质量分辨率和精确度;无需将离子分离,在同一时间内可以同时检测不同离子的质荷比及相对丰度[36] 难以反映化合物的结构信息,无法区分同分异构体;仪器购置、运行及维护成本较高[37-38]
    三维荧光光谱法(3D-EEM) 分子吸收能量(电能、热能、化学能、光能等)后由基态跃迁至激发态,在由不稳定激发态衰变回基态过程中产生荧光 灵敏度高、无需化学试剂、样品需求量少且对样品无破坏[21-22,39] 解谱及分析方法有待改进,DOM的表征参数范围有待统一
    下载: 导出CSV
  • [1] Zsolnay A. Dissolved organic matter: artefacts, definitions, and functions[J]. Geoderma, 2003, 113(3/4): 187 − 209.
    [2] Kalbitz K, Solinger S, Park JH, et al. Controls on the dynamics of dissolved organic matter in soils: A review[J]. Soil Science, 2000, 165(4): 277 − 304. doi: 10.1097/00010694-200004000-00001
    [3] 吴丰昌, 王立英, 黎 文, 等. 天然有机质及其在地表环境中的重要性[J]. 湖泊科学, 2008, 20(1): 1 − 12. doi: 10.3321/j.issn:1003-5427.2008.01.001
    [4] 许中坚, 刘广深, 刘维屏. 土壤中溶解性有机质的环境特性与行为[J]. 环境化学, 2003, 22(5): 427 − 433. doi: 10.3321/j.issn:0254-6108.2003.05.003
    [5] 吴东明, 邓 晓, 李 怡, 等. 土壤溶解性有机质的提取与特性分析研究进展[J]. 江苏农业科学, 2019, 47(3): 6 − 11.
    [6] 王 晶, 张旭东, 解宏图, 等. 现代土壤有机质研究中新的量化指标概述[J]. 应用生态学报, 2003, 14(10): 1809 − 1812. doi: 10.3321/j.issn:1001-9332.2003.10.049
    [7] 周江敏, 陈华林, 代静玉. 溶解性有机质在土壤固碳中的意义[J]. 土壤通报, 2011, 42(6): 1508 − 1514.
    [8] 张燕林, 潘 菲, 黄彩凤, 等. 森林土壤溶解性有机质特性及生态效应研究进展[J]. 内蒙古林业调查设计, 2020, 43(1): 77 − 80,34.
    [9] 王 晶, 张旭东, 解宏图, 等. 现代土壤有机质研究中新的量化指标概述[J]. 应用生态学报, 2003, 14(10): 1809 − 1812. doi: 10.3321/j.issn:1001-9332.2003.10.049
    [10] 刘 微, 王树涛. 土壤中溶解性有机物及其影响因素研究进展[J]. 土壤通报, 2011, 42(4): 997 − 1002.
    [11] 王美丽, 李 军, 朱兆洲, 等. 土壤溶解性有机质的研究进展[J]. 矿物岩石地球化学通报, 2010, 29(3): 304 − 310,316. doi: 10.3969/j.issn.1007-2802.2010.03.015
    [12] 韩成卫, 李忠佩, 刘 丽, 等. 去除溶解性有机质对红壤水稻土碳氮矿化的影响[J]. 中国农业科学, 2007, 40(1): 107 − 113. doi: 10.3321/j.issn:0578-1752.2007.01.015
    [13] 高树芳, 王 果, 方 玲. 溶解性有机质对水稻生长及元素吸收的影响[J]. 福建农业大学学报(自然科学版), 2001, 30(1): 87 − 90.
    [14] 沈 宏, 曹志洪, 胡正义. 土壤活性有机碳的表征及其生态效应[J]. 生态学杂志, 1999, (3): 33 − 39.
    [15] Pizzeghello D, Zanella A, Carletti P, et al. Chemical and biological characterization of dissolved organic matter from silver fir and beech forest soils[J]. Chemosphere, 2006, 65(2): 190 − 200. doi: 10.1016/j.chemosphere.2006.03.001
    [16] Glatzel S, Kalbitz K, Dalva M, et al. Dissolved organic matter properties and their relationship to carbon dioxide efflux from restored peat bogs[J]. Geoderma, 2003, 113(3/4): 397 − 411.
    [17] Mcdowell W H, Zsolnay A, Aitkenhead Peterson J A, et al. A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources[J]. Soil Biology and Biochemistry, 2006, 38(7): 1933 − 1942. doi: 10.1016/j.soilbio.2005.12.018
    [18] 李彬彬, 马军花, 武兰芳. 土壤溶解性有机物对CO2和N2O排放的影响[J]. 生态学报, 2014, 34(16): 4690 − 4697.
    [19] Wang Z P, Delaune R D, Lindau C W, et al. Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers[J]. Fertilizer Research, 1992, 33(2): 115 − 121. doi: 10.1007/BF01051166
    [20] Wagner D, Lipski A, Embacher A, et al. Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality[J]. Environmental Microbiology, 2005, 7(10): 1582 − 1592. doi: 10.1111/j.1462-2920.2005.00849.x
    [21] 何永安. 三维荧光光谱技术简介[J]. 分析测试通报, 1983, (4): 63 − 69.
    [22] Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51(4): 325 − 346. doi: 10.1016/0304-4203(95)00062-3
    [23] Artinger R, Geyer S, Fritz P, et al. Characterization of groundwater humic substances: Influence of sedimentary organic carbon[J]. Applied Geochemistry, 2000, 15(1): 97 − 116. doi: 10.1016/S0883-2927(99)00021-9
    [24] 傅平青, 吴丰昌, 刘丛强. 洱海沉积物间隙水中溶解有机质的地球化学特性[J]. 水科学进展, 2005, 16(3): 338 − 344. doi: 10.3321/j.issn:1001-6791.2005.03.005
    [25] 吴东明, 李 怡, 邓 晓, 等. 土壤溶解性有机质的组分分离与表征技术研究进展[J/OL]. 东北农业科学: 1 − 11[2021-11-30]. http://kns.cnki.net/kcms/detail/22.1376.S.20210514.1318.012.html.
    [26] 张福韬, 乔云发. 红外光谱与核磁共振在土壤有机质结构研究中的应用[J]. 安徽农业科学, 2015, (7): 81 − 84. doi: 10.3969/j.issn.0517-6611.2015.07.030
    [27] 何锡文, 陈 鼎, 杨万龙, 等. 傅里叶变换技术在紫外可见光谱区的应用[J]. 分析化学, 1994, (1): 94 − 100.
    [28] 周 萌, 肖 扬, 刘晓冰. 土壤活性有机质组分的光谱分析方法及应用[J]. 土壤, 2020, 52(6): 1093 − 1104.
    [29] 翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析(第三版)[M]. 北京: 化学工业出版社, 2017.
    [30] Chen H L, Zhou J M, Xiao B H. Characterization of dissolved organic matter derived from rice straw at different stages of decay[J]. Journal of Soil & Sediments, 2010, 10(5): 915 − 922.
    [31] 要世瑾, 杜光源, 牟红梅, 等. 核磁共振技术在土壤-植物-大气连续体研究中的应用[J]. 应用生态学报, 2016, 27(1): 315 − 326.
    [32] 李昌明, 王晓玥, 孙 波. 基于固态13C核磁共振波谱研究植物残体分解和转化机制的进展[J]. 土壤, 2017, 49(4): 658 − 664.
    [33] 王乃兴. 《核磁共振谱学-在有机化学中的应用》(第三版)[J]. 分析化学, 2015, 43(10): 1498.
    [34] 王光辉, 熊少祥, 何美玉, 等. 傅里叶变换-离子回旋共振质谱[J]. 现代仪器, 2001, (1): 1 − 5.
    [35] 刘晗青, 郭寅龙. 傅立叶变换-离子回旋共振质谱法在蛋白质分析中的应用[J]. 质谱学报, 2003, 24(2): 363 − 369. doi: 10.3969/j.issn.1004-2997.2003.02.010
    [36] 李素梅, 孟祥兵, 张宝收, 等. 傅里叶变换离子回旋共振质谱的地球化学意义及其在油气勘探中的应用前景[J]. 现代地质, 2013, 27(1): 124 − 132. doi: 10.3969/j.issn.1000-8527.2013.01.013
    [37] 李树奇, 鲍晓迪, 殷 红, 等. 傅里叶变换离子回旋共振质谱仪: 过去、现在与未来[J]. 大学化学, 2015, (4): 1 − 10. doi: 10.3866/pku.DXHX20150401
    [38] 陈 旭, 韩晓增, 严 君, 等. 基于傅里叶变换离子回旋共振质谱测定的土壤溶解性有机质研究进展[J]. 土壤通报, 2019, 50(3): 732 − 738.
    [39] 汪之睿, 于静洁, 王少坡, 等. 三维荧光技术在水环境监测中的应用研究进展[J]. 化工环保, 2020, 40(2): 125 − 130. doi: 10.3969/j.issn.1006-1878.2020.02.003
    [40] 傅平青. 水环境中的溶解有机质及其与金属离子的相互作用——荧光光谱学研究[D]. 贵州: 中国科学院地球化学研究所, 2004.
    [41] 许金钩. 荧光分析法近年来的某些进展[J]. 岩矿测试, 1992, (Z1): 52 − 57.
    [42] 李宏斌, 刘文清, 张玉钧, 等. 三维荧光光谱技术在水监测中的应用[J]. 光学技术, 2006, 32(1): 27 − 30. doi: 10.3321/j.issn:1002-1582.2006.01.033
    [43] 刘译阳, 张 华, 张晓飞, 等. 紫外可见吸收—三维荧光光谱法测定苯酚的相关性研究[J]. 环境与发展, 2018, 30(2): 114 − 115.
    [44] 刘 健, 祁黎明, 于常红, 等. 三维荧光光谱应用于海水中有色溶解有机物分析的探讨[J]. 海洋环境科学, 2014, 33(4): 650 − 656.
    [45] 梅 毅, 吴丰昌, 王立英, 等. 运用3DEEMs及荧光偏振方法研究pH、离子强度及浓度效应对腐殖酸荧光光谱特性的影响[J]. 地球化学, 2008, 37(2): 165 − 173. doi: 10.3321/j.issn:0379-1726.2008.02.008
    [46] Kinniburgh D G, Riemsdijk van W H, Koopal L K, et al. Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency[J]. Colloids and Surfaces, 1999, 151(1/2): 147 − 166.
    [47] Wu F C, Tanoue E. Geochemical characterization of organic ligands for copper(II) in different molecular size fractions in Lake Biwa, Japan[J]. Organic Geochemistry, 2001, 32(11): 1311 − 1318. doi: 10.1016/S0146-6380(01)00094-8
    [48] 桂洪杰, 李媛媛, 王 果, 等. 不同pH值条件下土壤溶出CDOM的荧光谱特征[J]. 化学工程师, 2019, (6): 1 − 4.
    [49] Michael J P, Zahir K O. Investigation of metal ions binding of humic substances using fluorescence emission and synchronous-scan spectroscopy[J]. Journal of Environmental Science and Health, 2000, 35(1): 87 − 102. doi: 10.1080/03601230009373256
    [50] Esteves Da Silva J C. G, Machado A A. S. C, Oliverira C J. S, et al. Fluorescence quenching of anthropogenic fulvic acids by Cu(II), Fe(III) and UO22 + .[J]. Talanta, 1998, 45(6): 1155 − 1165. doi: 10.1016/S0039-9140(97)00224-5
    [51] Reynolds D M, Ahmad S R. The effect of metal ions on the fluorescence of sewage wastewater[J]. Water Research, 1995, 29(9): 2214 − 2216. doi: 10.1016/0043-1354(95)00046-N
    [52] 崔志成, 刘文清, 赵南京, 等. 水体的温度变化对测定溶解有机物浓度的影响[J]. 光谱学与光谱分析, 2006, 26(6): 1127 − 1129. doi: 10.3321/j.issn:1000-0593.2006.06.039
    [53] 吴月颖, 吉恒宽, 吴蔚东, 等. 海南北部滨海区不同土地利用模式下土壤DOM粒径分布与光谱特性[J]. 农业资源与环境学报, 2020, 37(5): 654 − 665.
    [54] McKnight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity[J]. Limnology and Oceanography, 2001, 46(1): 38 − 48. doi: 10.4319/lo.2001.46.1.0038
    [55] 秦纪洪, 王 姝, 刘 琛, 等. 海拔梯度上川西高山土壤溶解性有机质(DOM)光谱特征[J]. 中国环境科学, 2019, 39(10): 4321 − 4328. doi: 10.3969/j.issn.1000-6923.2019.10.035
    [56] Qin X Q, Yao B, Jin L, et al. Characterizing soil dissolved organic matter in typical soils from China using fluorescence EEM–PARAFAC and UV–visible absorption[J]. Aquatic Geochemistry, 2020, 26: 71 − 88. doi: 10.1007/s10498-019-09366-7
    [57] Ohno T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742 − 746.
    [58] Birdwell J E, Valsaraj K T. Characterization of dissolved organic matter in fogwater by excitation–emission matrix fluorescence spectroscopy[J]. Atmospheric Environment, 2010, 44(27): 3246 − 3253. doi: 10.1016/j.atmosenv.2010.05.055
    [59] Gao J k, Shi Z Y, Wu H M, et al. Fluorescent characteristics of dissolved organic matter released from biochar and paddy soil incorporated with biochar[J]. RSC Advances, 2020, 10(10): 5785 − 5793. doi: 10.1039/C9RA10279E
    [60] Musadji N Y, Lemée L, Caner L, et al. Spectral characteristics of soil dissolved organic matter: Long-term effects of exogenous organic matter on soil organic matter and spatial-temporal changes[J]. Chemosphere, 2020, 240: 124808. doi: 10.1016/j.chemosphere.2019.124808
    [61] Wilson H F, Xenopoulos M A. Effects of agricultural land use on the composition of fluvial dissolved organic matter[J]. Nature geoscience, 2009, 2(1): 37 − 41. doi: 10.1038/ngeo391
    [62] Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary[J]. Organic Geochemistry, 2009, 40(6): 706 − 719. doi: 10.1016/j.orggeochem.2009.03.002
    [63] Birdwell J E, Engel A S. Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy[J]. Organic Geochemistry, 2009, 41(3): 270 − 280.
    [64] Liu C, Li Z W, Berhe A A, et al. Characterizing dissolved organic matter in eroded sediments from a loess hilly catchment using fluorescence EEM-PARAFAC and UV–visible absorption: Insights from source identification and carbon cycling[J]. Geoderma, 2020, 334: 37 − 48.
    [65] Gao J K, Liang C L, Shen G Z, et al. Spectral characteristics of dissolved organic matter in various agricultural soils throughout China[J]. Chemosphere, 2017, 176: 108 − 116. doi: 10.1016/j.chemosphere.2017.02.104
    [66] 曹佳锐, 龚可杨, 别宇静, 等. 水土保持林恢复土壤可溶性碳氮组分动态与三维荧光特征分析[J]. 生态学报, 2021, 41(19): 7679 − 7688.
    [67] 郝 蓉, 徐召玉, 沈祠福, 等. 消落带夏冬季土壤溶解有机质的组成特征及来源[J]. 生态环境学报, 2019, 28(6): 1127 − 1133.
    [68] Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82(3): 239 − 254.
    [69] Chen W, Paul W, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701 − 5710.
    [70] 许 禄, 邵学广. 化学计量学方法[M]. 北京: 科学出版社, 2004.
    [71] Bro R. PARAFAC. Tutorial and applications[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 149 − 171. doi: 10.1016/S0169-7439(97)00032-4
    [72] Stedmon C A, Bro R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial[J]. Limnology and Oceanography:Methods, 2008, 6(11): 572 − 579. doi: 10.4319/lom.2008.6.572
    [73] Kathleen R, Stedmon C A, Wenig P, et al. Open fluor-An online spectral library of auto-fluorescence by organic compounds in the environment[J]. Analytical Method, 2014, 6(3): 658 − 660. doi: 10.1039/C3AY41935E
    [74] Romero C M, Engel R E, D’Andrilli J, et al. Compositional tracking of dissolved organic matter in semiarid wheat-based cropping systems using fluorescence EEMs-PARAFAC and absorbance spectroscopy[J]. Journal of Arid Environments, 2019, 167: 34 − 42. doi: 10.1016/j.jaridenv.2019.04.013
    [75] 元晓春, 陈岳民, 袁 硕, 等. 氮沉降对杉木人工幼林土壤溶液可溶性有机物质浓度及光谱学特征的影响[J]. 应用生态学报, 2017, 28(1): 1 − 11.
    [76] 程 蕾, 林开淼, 周嘉聪, 等. 氮沉降对毛竹林土壤可溶性有机质数量与光谱学特征的影响[J]. 应用生态学报, 2019, 30(5): 1754 − 1762.
    [77] 李晓东, 曹云者, 丁 洁, 等. 长期不同水分调控对污染场地土壤溶解性有机质含量及其结构特征的影响[J]. 环境科学学报, 2021, 41(8): 3366 − 3373.
  • 加载中
表(1)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  1507
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 录用日期:  2022-01-13
  • 修回日期:  2022-01-05
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回