留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

巫山黄土成因及其发育土壤特征研究

刘俊延 陈林 慈恩 胡瑾

刘俊延, 陈 林, 慈 恩, 胡 瑾. 巫山黄土成因及其发育土壤特征研究[J]. 土壤通报, 2022, 53(2): 262 − 269 doi: 10.19336/j.cnki.trtb.2021082704
引用本文: 刘俊延, 陈 林, 慈 恩, 胡 瑾. 巫山黄土成因及其发育土壤特征研究[J]. 土壤通报, 2022, 53(2): 262 − 269 doi: 10.19336/j.cnki.trtb.2021082704
LIU Jun-yan, CHEN Lin, CI En, HU Jin. The Origin of Wushan Loess and the Characteristics of Soil Derived from It[J]. Chinese Journal of Soil Science, 2022, 53(2): 262 − 269 doi: 10.19336/j.cnki.trtb.2021082704
Citation: LIU Jun-yan, CHEN Lin, CI En, HU Jin. The Origin of Wushan Loess and the Characteristics of Soil Derived from It[J]. Chinese Journal of Soil Science, 2022, 53(2): 262 − 269 doi: 10.19336/j.cnki.trtb.2021082704

巫山黄土成因及其发育土壤特征研究

doi: 10.19336/j.cnki.trtb.2021082704
基金项目: 国家自然科学基金项目(41977002)和中央高校基本科研业务费专项资金项目(XDJK2020B069)资助
详细信息
    作者简介:

    刘俊延(1997−),男,四川达州人,硕士研究生,主要研究方向为土壤发生与分类。E-mail: liujunyan559@163.com

    通讯作者:

    E-mail: cien777@163.com

  • 中图分类号: S151.1

The Origin of Wushan Loess and the Characteristics of Soil Derived from It

  • 摘要:   目的  为探明巫山黄土成因,了解该类母质发育土壤的发生学特征。  方法  以典型巫山黄土及其发育土壤剖面为研究对象,通过野外调查采样和室内分析,详细考察剖面形态、颗粒组成、常量元素地球化学特征及其他相关理化性质,计算探讨硅铝率( Sa )、化学蚀变指数( CIA )、钠钾比( Na/K )、铁游离度等风化指标。  结果  (1)巫山黄土的颗粒组成以粉粒为主,平均含量为53.29%,与典型风尘沉积物相似,同时,巫山黄土与其他区域风成黄土的主要元素硅、铝、铁含量非常接近,上陆壳(UCC)标准化曲线也较为相似;(2)该剖面100 ~ 140 cm深度与其他深度相比,有机碳和硒含量较高,CaCO3相当物含量和δ13C值较低,推测在此深度堆积过程中的气候较为温湿,并可能出现过植物的生长;(3)巫山黄土剖面的 Sa 为8.73 ~ 9.17、 CIA 为65.96 ~ 69.10、 Na/K 为0.74 ~ 0.89、铁游离度为22.88% ~ 29.74%,与其他地区风成黄土相比,巫山黄土风化程度强于洛川黄土而弱于下蜀黄土和成都黏土,与汉江黄土和甘孜黄土十分接近。  结论  巫山黄土应为风积成因,处于中等化学风化程度,以脱盐基为主,脱硅富铁铝化程度弱,可能与汉江黄土或甘孜黄土同源。
  • 图  1  巫山黄土样点位置与剖面图

    Figure  1.  Location and photo of the Wushan loess profile

    图  2  不同地区黄土常量元素UCC标准化曲线图

    洛川黄土的数据来源于文献[21];叠溪黄土的数据来源于文献[22];巫山黄土(客运港)的数据来源于文献[23];下蜀黄土的数据来源于文献[20];甘孜黄土的数据来源于文献[24];成都黏土的数据来源于文献[25];汉江黄土的数据来源于文献[26];UCC的数据来源于文献[27]

    Figure  2.  UCC-normalized patterns of major elements of loess from different regions

    图  3  巫山博物馆黄土剖面pH、有机碳、Se、CEC、CaCO3相当物和δ13C特征

    Figure  3.  The characteristics of pH, soil organic carbon, Se, CEC, Calcium carbonate equivalent and δ13C of the Wushan museum loess profile

    图  4  不同地区风成堆积剖面的CIANa/K

    宣城红土的数据来源于文献[28],其他数据来源与图2相同。

    Figure  4.  The CIA and Na/K of aeolian-dust deposit profiles from different regions

    表  1  巫山博物馆黄土剖面形态特征和颗粒组成

    Table  1.   Morphological characteristics and particle size composition of the Wushan museum loess profile

    深度(cm)
    Depth
    土壤颜色
    Soil color
    结构
    Structure
    颗粒组成(美国制)
    Particle composition (USDA)
    质地
    Soil texture
    母质均一性值
    Uniformity
    value
    干态
    Dry
    润态
    Wet
    砂粒(%)
    Sand
    粉粒(%)
    Silt
    黏粒(%)
    Clay
    0 ~ 2010YR 5/410YR 4/4小块状32.8442.4124.76壤土−0.46
    20 ~ 4010YR 5/410YR 4/4中块状17.2161.1321.66粉壤土−0.03
    40 ~ 6010YR 5/410YR 4/4大块状26.2051.2922.51粉壤土−0.08
    60 ~ 8010YR 5/410YR 4/4大块状20.5053.2426.26粉壤土0.09
    80 ~ 10010YR 5/410YR 4/4大块状20.3957.3622.26粉壤土−0.24
    100 ~ 12010YR 5/410YR 4/4大块状18.3054.7126.99粉壤土1.04
    120 ~ 14010YR 5/410YR 4/4大块状19.9956.5223.48粉壤土−0.49
    140 ~ 16010YR 5/410YR 4/4大块状20.2254.4625.33粉壤土0.56
    160 ~ 18010YR 5/410YR 4/4大块状24.3452.8722.80粉壤土−0.27
    180 ~ 20010YR 6/410YR 4/4大块状23.2252.7224.05粉壤土
    400 ~ 50010YR 6/410YR 5/6大块状29.4849.4321.09壤土
    下载: 导出CSV

    表  2  巫山博物馆黄土剖面常量元素含量

    Table  2.   The major element contents of the Wushan museum loess profile

    深度(cm)
    Depth
    SiO2
    (g kg−1)
    Al2O3
    (g kg−1)
    Fe2O3
    (g kg−1)
    MgO
    (g kg−1)
    CaO
    (g kg−1)
    Na2O
    (g kg−1)
    K2O
    (g kg−1)
    TiO2
    (g kg−1)
    MnO
    (g kg−1)
    0 ~ 20651.68124.4452.9313.8435.0511.4521.378.000.76
    20 ~ 40651.12123.6352.7913.2735.3011.2820.827.940.73
    40 ~ 60659.12128.0954.6613.2032.9210.6520.668.120.69
    60 ~ 80650.11123.6553.3413.4736.0610.8720.898.000.75
    80 ~ 100661.73128.0154.7413.5827.5411.0420.968.170.76
    100 ~ 120658.87124.4453.2913.0827.4811.4520.918.090.75
    120 ~ 140664.44126.7254.3413.2125.3011.8321.098.300.80
    140 ~ 160635.80122.8752.3113.4442.0111.0521.027.940.77
    160 ~ 180650.88122.2952.1713.3436.6712.2521.068.000.80
    180 ~ 200655.09121.2751.5113.5835.8812.0320.538.070.80
    400 ~ 500645.89120.3251.1312.9045.359.7720.028.010.73
    最大值664.44128.0954.7413.8445.3512.2521.378.300.80
    最小值635.80120.3251.1312.9025.309.7720.027.940.69
    平均值653.16124.1653.0213.3634.5111.2420.858.060.76
    标准差8.052.561.210.266.070.690.350.110.03
    变异系数1.23%2.07%2.29%1.97%17.60%6.16%1.69%1.33%4.47%
    下载: 导出CSV

    表  3  巫山博物馆黄土剖面风化发育特征

    Table  3.   Chemical weathering indices in the Wushan museum loess profile

    深度(cm)
    Depth
    Na/KSaCIA铁游离度(%)
    Free degree of Fe
    铁活化度(%)
    Activity degree of Fe
    0 ~ 200.818.8967.1823.8613.07
    20 ~ 400.828.9467.4524.1313.61
    40 ~ 600.788.7369.0527.9411.89
    60 ~ 800.798.9267.9326.8210.95
    80 ~ 1000.808.7768.4525.3811.73
    100 ~ 1200.838.9867.3725.1414.19
    120 ~ 1400.858.9067.2422.8815.47
    140 ~ 1600.808.7867.5224.7616.02
    160 ~ 1800.889.0365.9624.6715.10
    180 ~ 2000.899.1766.2429.7413.31
    400 ~ 5000.749.1169.1026.5714.10
    最大值0.899.1769.1029.7416.02
    最小值0.748.7365.9622.8810.95
    平均值0.828.9367.5825.6313.59
    标准差0.040.14 1.001.991.61
    变异系数5.38%1.55% 1.49%7.75%11.87%
    下载: 导出CSV
  • [1] Sun Z, Owens P R, Han C, et al. A quantitative reconstruction of a loess-paleosol sequence focused on paleosol genesis: An example from a section at Chaoyang, China[J]. Geoderma, 2016, 266: 25 − 39. doi: 10.1016/j.geoderma.2015.12.012
    [2] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985.
    [3] Meng X, Liu L, Wang X T, et al. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the early Pleistocene interglacials[J]. Earth and Planetary Science Letters, 2018, 486: 61 − 69. doi: 10.1016/j.jpgl.2017.12.048
    [4] 吴 可, 彭红霞, 时 冉. 长江三峡地区黄土粒度特征及其成因分析[J]. 华中师范大学学报(自然科学版), 2014, 48(2): 284 − 289.
    [5] 张玉芬, 李长安, 李启文, 等. 三峡巫山黄土Sr-Nd同位素组成与物源示踪[J]. 地球科学, 2020, 45(3): 960 − 967.
    [6] 张玉芬, 李长安, 熊德强, 等. 长江三峡巫山黄土稀土元素特征及古气候环境意义[J]. 中国地质. 2020-04-21. http://kns.cnki.net/kcms/detail/11.1167.P.20200421.1251.004.html
    [7] 谢 明. 长江三峡地区的黄土状堆积物[J]. 地球化学, 1991, 20(3): 292 − 300. doi: 10.3321/j.issn:0379-1726.1991.03.011
    [8] 柯于义, 尹华刚, 郭 峰, 等. 三峡库区“巫山黄土”成因研究[J]. 人民长江, 2007, 38(9): 72 − 73,76. doi: 10.3969/j.issn.1001-4179.2007.09.028
    [9] 李长安, 张玉芬, 袁胜元, 等. “巫山黄土”粒度特征及其对成因的指示[J]. 地球科学(中国地质大学学报), 2010, 35(5): 879 − 884.
    [10] 李长安, 张玉芬, 熊德强, 等. “巫山黄土”常量元素地球化学特征[J]. 地球科学(中国地质大学学报), 2013, 38(5): 916 − 922.
    [11] 张玉芬, 李长安, 邵 磊, 等. “巫山黄土”的稀土元素特征与成因[J]. 地球科学(中国地质大学学报), 2013, 38(1): 181 − 187.
    [12] 张玉芬, 李长安, 邵 磊, 等. “巫山黄土”的磁组构特征及成因[J]. 地球科学(中国地质大学学报), 2010, 35(5): 885 − 890.
    [13] 朱晓雨, 刘连文, 孟先强. 巫山地区三类黄土沉积物的粒度特征及物源启示[J]. 地球环境学报, 2019, 10(6): 579 − 589.
    [14] 李长安, 张玉芬, 李亚伟, 等. 湖北秭归沙镇溪剖面的巫山黄土地层结构与特征[J]. 地质论评, 2020, 66(1): 207 − 213.
    [15] 中国科学院南京土壤研究所, 中国科学院西安光学精密机械研究所. 中国标准土壤色卡[M]. 南京: 南京出版社, 1989.
    [16] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012.
    [17] 慈 恩, 朱 洁, 彭 娟, 等. 垄作免耕对稻田土壤有机碳活性组分和δ13C的影响[J]. 中国农业科学, 2013, 46(5): 978 − 986. doi: 10.3864/j.issn.0578-1752.2013.05.013
    [18] Schaetzl R J. Lithologic discontinuities in some soils on drumlins: theory, detection, and application[J]. Soil Science, 1998, 163(7): 570 − 590. doi: 10.1097/00010694-199807000-00006
    [19] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715 − 717. doi: 10.1038/299715a0
    [20] 李徐生, 韩志勇, 杨守业, 等. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报, 2007, 62(11): 1174 − 1184. doi: 10.3321/j.issn:0375-5444.2007.11.006
    [21] 陈 骏, 季峻峰. 陕西洛川黄土化学风化程度的地球化学研究[J]. 中国科学(D辑:地球科学), 1997, 27(6): 531.
    [22] 文星跃, 吴 勇, 黄成敏, 等. 岷江上游晚更新世黄土粒度与元素组成特征及其物源指示意义[J]. 山地学报, 2019, 37(4): 488 − 498.
    [23] 张玉芬, 邵 磊, 熊德强. “巫山黄土”元素地球化学特征及成因和物源意义[J]. 沉积学报, 2014, 32(1): 78 − 84.
    [24] 王 玲, 刘冬雁, 刘 明, 等. 川西高原甘孜黄土A剖面常量元素地球化学特征初步研究[J]. 中国海洋大学学报(自然科学版), 2010, 40(S1): 221 − 225.
    [25] 应立朝, 梁 斌, 王全伟, 等. 成都粘土地球化学特征及其对物源和风化强度的指示[J]. 中国地质, 2013, 40(5): 1666 − 1674. doi: 10.3969/j.issn.1000-3657.2013.05.029
    [26] 毛沛妮, 庞奖励, 黄春长, 等. 汉江上游黄土常量元素地球化学特征及区域对比[J]. 地理学报, 2017, 72(2): 279 − 291. doi: 10.11821/dlxb201702008
    [27] Taylor S R, Mclennan S M. The continental crust: Its composition and evolution [M]. London: Blackwell, 1985: 277-312
    [28] 李文慧, 胡春生, 田景梅, 等. 安徽宣城向阳剖面第四纪红土常量元素地球化学特征及其古气候意义[J]. 山地学报, 2020, 38(3): 371 − 383.
    [29] 孙东怀, 鹿化煜, David Rea, 等. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报, 2000, 18(3): 327 − 335. doi: 10.3969/j.issn.1000-0550.2000.03.001
    [30] 王 孝, 叶 青, 李建武, 等. 新嵊盆地玄武岩发育土壤的母质均一性判定[J]. 土壤通报, 2021, 52(2): 253 − 260.
    [31] 文启忠. 中国黄土地球化学[M]. 北京: 科学出版社, 1989.
    [32] 雷祥义, 岳乐平, 陕西关中晚更新世黄土古土壤序列特征一及其记录的古环境变迁[J]. 地质论评, 43(5): 550-560.
    [33] Zanelli R, Egli M, Mirabella A, et al. Vegetation effects on pedogenetic forms of Fe, Al and Si and on clay minerals in soils in southern Switzerland and northern Italy[J]. Geoderma, 2007, 141: 119 − 129. doi: 10.1016/j.geoderma.2007.05.008
    [34] 冯连君, 储雪蕾, 张启锐, 等. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘, 2003, 10(4): 539 − 544. doi: 10.3321/j.issn:1005-2321.2003.04.019
    [35] 乔彦松, 赵志中, 王 燕, 等. 川西甘孜黄土-古土壤序列的地球化学演化特征及其古气候意义[J]. 科学通报, 2010, 55(3): 255 − 260.
    [36] 刘玉晶, 陆晓辉, 罗 丹, 等. 贵州喀斯特山区典型土壤氧化铁特征及其与土壤类型分异关系[J]. 土壤通报, 2021, 52(3): 505 − 514.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  59
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-27
  • 录用日期:  2021-11-20
  • 修回日期:  2021-10-29
  • 刊出日期:  2022-04-07

目录

    /

    返回文章
    返回