留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物炭对盐胁迫下黄瓜叶片抗氧化酶活性和矿质元素累积的影响

张功臣 秦玉红 王波 展恩军 李磊 张守才

张功臣, 秦玉红, 王 波, 展恩军, 李 磊, 张守才. 生物炭对盐胁迫下黄瓜叶片抗氧化酶活性和矿质元素累积的影响[J]. 土壤通报, 2022, 53(4): 931 − 938 doi: 10.19336/j.cnki.trtb.2021102204
引用本文: 张功臣, 秦玉红, 王 波, 展恩军, 李 磊, 张守才. 生物炭对盐胁迫下黄瓜叶片抗氧化酶活性和矿质元素累积的影响[J]. 土壤通报, 2022, 53(4): 931 − 938 doi: 10.19336/j.cnki.trtb.2021102204
ZHANG Gong-chen, QIN Yu-hong, WANG Bo, ZHAN En-jun, LI Lei, ZHANG Shou-cai. Effects of Biochar on the Antioxidant Enzyme Activities and Mineral Element Contents In Cucumber Leaves under Salt Stress[J]. Chinese Journal of Soil Science, 2022, 53(4): 931 − 938 doi: 10.19336/j.cnki.trtb.2021102204
Citation: ZHANG Gong-chen, QIN Yu-hong, WANG Bo, ZHAN En-jun, LI Lei, ZHANG Shou-cai. Effects of Biochar on the Antioxidant Enzyme Activities and Mineral Element Contents In Cucumber Leaves under Salt Stress[J]. Chinese Journal of Soil Science, 2022, 53(4): 931 − 938 doi: 10.19336/j.cnki.trtb.2021102204

生物炭对盐胁迫下黄瓜叶片抗氧化酶活性和矿质元素累积的影响

doi: 10.19336/j.cnki.trtb.2021102204
基金项目: 青岛市科技惠民示范引导专项(21-1-4-ny-15-nsh)和财政部和农业农村部:国家现代农业产业技术体系项目(CARS-23-G10)资助
详细信息
    作者简介:

    张功臣(1986−),男,山东青岛人,博士,副研究员,主要从事设施蔬菜栽培研究。E-mail: gczhangnky@163.com

    通讯作者:

    E-mail: zsc403@163.com

  • 中图分类号: S642.2

Effects of Biochar on the Antioxidant Enzyme Activities and Mineral Element Contents In Cucumber Leaves under Salt Stress

  • 摘要:   目的  研究生物炭对盐胁迫下设施黄瓜生长和生理特性的影响。  方法  以设施黄瓜(Cucumis sativus L.)专用品种‘翠龙’为试验材料,开展温室盆栽试验,设非盐胁迫和盐胁迫下栽培基质(草炭∶蛭石 = 2∶1)中添加0%(B0,w/w)、3%(B3)和5%(B5)的花生壳炭共6个处理,调查黄瓜的生长、产量、品质、叶片抗氧化酶活性以及矿质元素含量等指标。  结果  生物炭施用可明显提高黄瓜的耐盐性,在NaCl胁迫下,B5处理黄瓜的株高、最大单叶叶面积、产量和抗坏血酸含量均显著高于不施生物炭处理,且B3和B5处理的黄瓜果实硝酸盐含量在非盐胁迫和盐胁迫下均显著低于对照。盐胁迫下,春、秋两季栽培试验中B5处理黄瓜产量分别为对照处理的2.97倍和2.57倍。生物炭处理使黄瓜叶片抗氧化酶活性在盐胁迫下维持较高水平,特别是B5处理黄瓜植株叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)活性与对照相比显著增加而丙二醛(MDA)含量与对照相比显著降低。盐胁迫下,生物炭处理黄瓜顶部叶片中氮和钾的含量与对照相比显著升高,磷、钠、钙和镁的含量与对照相比显著降低;而在底部叶片中除钠含量显著高于对照外,其他元素的含量在不同生物炭施用量间存在差异。  结论  基质中添加适量的生物炭促进盐胁迫下黄瓜生长,增强抗氧化酶活性,促进氮和钾在顶部叶片的累积,减少钠的累积,缓解盐胁迫对黄瓜的伤害,且以添加5%生物炭处理效果较好。
  • 图  1  生物炭对非盐胁迫和盐胁迫条件下基质栽培黄瓜果实品质的影响

    柱上方不同小写字母和大写字母表示差异显著(P < 0.05),下同。

    Figure  1.  Effects of biochar on the quality of cucumber fruits without or with NaCl treatment under substrate cultivation

    图  2  生物炭对盐胁迫条件下基质栽培黄瓜叶片抗氧化酶活性和MDA含量的影响

    Figure  2.  Effects of biochar on the antioxidant enzyme activity and MDA content in cucumber leaves with NaCl under substrate cultivation

    图  3  生物炭对非盐胁迫和盐胁迫条件下基质栽培黄瓜叶片矿质元素含量的影响

    顶部叶片表示从植株主蔓顶部数第四片完全展开真叶;底部叶片表示从植株主蔓底部数第四片真叶。

    Figure  3.  Effects of biochar on the mineral element content in cucumber leaves with NaCl under substrate cultivation

    表  1  生物炭施用对盐胁迫条件下黄瓜生长的影响

    Table  1.   Effect of biochar on the growth of cucumber with NaCl treatment

    处理
    Treatment
    株高(cm)
    Plant height
    叶片数
    Number of leaves
    茎粗(mm)
    Stem diameter
    最大单叶叶面积(cm2)
    Maximum single leaf area
    NaCl生物炭
    Biochar
    0 mmol L−1 B0 135.67 ± 8.81 a 12.67 ± 0.75 a 8.45 ± 0.43 a 462.90 ± 46.80 a
    B3 129.33 ± 5.55 a 12.38 ± 0.53 a 8.36 ± 0.41a 450.63 ± 38.53 a
    B5 136.25 ± 7.61 a 12.58 ± 0.36 a 8.23 ± 0.43a 454.65 ± 54.02 a
    150 mmol L−1 B0 100.92 ± 12.49 d 10.38 ± 0.93 b 6.97 ± 0.52 b 312.74 ± 51.90 c
    B3 103.82 ± 6.72 cd 10.68 ± 0.40 b 6.88 ± 0.44 b 336.87 ± 37.19 bc
    B5 109.92 ± 10.06 b 10.63 ± 0.83 b 7.00 ± 0.60 b 354.94 ± 42.48 b
    注:同一列中不同的小写字母表示差异显著(P < 0.05),下同。
    下载: 导出CSV

    表  2  生物炭施用对盐胁迫条件下黄瓜产量的影响

    Table  2.   Effect of biochar on the yield of cucumber with NaCl treatment

    处理
    Treatment
    春季
    Spring growing season
    秋季
    Autumn growing season
    NaCl生物炭
    Biochar
    瓜条数
    Number of fruits
    产量 (kg)
    Yield
    瓜条数
    Number of fruits
    产量 (kg)
    Yield
    0 mmol L−1 B0 113.33 ± 5.13 a 15.93 ± 0.06 a 38.67 ± 4.16 b 5.00 ±0.44 b
    B3 103.33 ± 4.51 a 15.92 ± 0.20 a 37.5 ± 4.36 b 4.99 ± 0.40 b
    B5 103.00 ± 2.00 a 15.11 ± 0.49 a 52.00 ± 7.81 a 7.26 ± 1.33 a
    150 mmol L−1 B0 18.00 ± 1.00 d 1.70 ± 0.07 d 7.67 ± 1.15 e 0.82 ± 0.13 b
    B3 30.33 ± 8.39 c 3.03 ± 0.76 c 11.00 ± 1.00 de 0.92 ± 0.15 b
    B5 44.67 ± 3.21 b 5.05 ± 0.28 b 18.67 ± 2.08 c 2.11 ± 0.35 a
    下载: 导出CSV
  • [1] 黄绍文, 高 伟, 唐继伟, 等. 我国主要菜区耕层土壤盐分总量及离子组成[J]. 植物营养与肥料学报, 2016, 22(4): 965 − 977.
    [2] 李 涛, 于 蕾, 吴 越, 等. 山东省设施菜地土壤次生盐渍化特征及影响因素[J]. 土壤学报, 2018, 55(1): 100 − 110.
    [3] 魏 丹, 李 艳, 秦程程, 等. 环渤海地区设施蔬菜土壤障碍与治理措施[J]. 中国土壤与肥料, 2021, (5): 303 − 309.
    [4] Chen W, Meng J, Han X, et al. Past, present, and future of biochar[J]. Biochar, 2019, 1(1): 75 − 87.
    [5] Saifullah, Dahlawi S, Naeem A, et al. Biochar application for the remediation of salt-affected soils: challenges and opportunities[J]. Science of the Total Environment, 2017, 625: 320 − 335.
    [6] Thomas S C, Frye S, Gale N, et al. Biochar mitigates negative effects of salt additions on two herbaceous plant species[J]. Journal of Environmental Management, 2013, 129: 62 − 68.
    [7] Hammer E C, Forstreuter M, Rillig M C, et al. Biochar increases Arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress[J]. Applied Soil Ecology, 2015, 96: 114 − 121. doi: 10.1016/j.apsoil.2015.07.014
    [8] Kim H S, Kim K R, Yang J E, et al. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L. ) response[J]. Chemosphere, 2016, 142: 153 − 159. doi: 10.1016/j.chemosphere.2015.06.041
    [9] Farhangi-Abriz S, Torabian S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress[J]. Ecotoxicology and Environmental Safety, 2017, 137: 64 − 70. doi: 10.1016/j.ecoenv.2016.11.029
    [10] Zheng H, Wang X, Chen L, et al. Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant, Cell & Environment, 2018, 41(3): 517-532.
    [11] 赖 伟, 何 鹏, 徐明远, 等. 黄瓜耐盐性与耐盐相关基因的研究进展[J]. 中国蔬菜, 2020, (6): 16 − 22.
    [12] 张功臣, 陈建美, 赵征宇, 等. 生物质炭对设施连作土壤性质及黄瓜生长和产量的影响[J]. 土壤通报, 2018, 49(3): 659 − 666.
    [13] 孙德智, 韩晓日, 杨恒山, 等. 外源NO对Ca(NO3)2胁迫下番茄叶片活性氧损伤的缓解效应[J]. 土壤学报, 2019, 56(3): 728 − 738.
    [14] 裴孝伯, 李世诚, 张福墁, 等. 温室黄瓜叶面积计算及其与株高的相关性研究[J]. 中国农学通报, 2005, 8: 80 − 82. doi: 10.3969/j.issn.1000-6850.2005.08.022
    [15] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2001.
    [16] Ukeda H, Kawana D, Maeda S, et al. Spectrophotometric assay for superoxide dismutase based on the reduction of highly water-soluble tetrazolium salts by xanthine-xanthine oxidase[J]. Bioscience, Biotechnology, and Biochemistry, 1999, 63(3): 485 − 488. doi: 10.1271/bbb.63.485
    [17] 鲍士旦. 土壤农化分析. 第三版[M]. 北京: 中国农业出版社, 2013.
    [18] He K, He G, Wang C, et al. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil[J]. Applied Soil Ecology, 2020, 155: 103674. doi: 10.1016/j.apsoil.2020.103674
    [19] Elbashier M M A, Xiaohou S, Ali A A S, et al. Effect of digestate and biochar amendments on photosynthesis rate, growth parameters, water use efficiency and yield of Chinese melon (Cucumis melo L. ) under saline irrigation. Agronomy, 2018, 8: 22.
    [20] She D, Sun X, Gamareldawla A H D, et al. Benefits of soil biochar amendments to tomato growth under saline water irrigation[J]. Scientific Reports, 2018, 8(1): 14743. doi: 10.1038/s41598-018-33040-7
    [21] 周俊国, 扈惠灵, 曾 凯, 等. NaCl胁迫下黄瓜幼苗无机离子的渗透调节效应[J]. 河南农业科学, 2010, (2): 79 − 82. doi: 10.3969/j.issn.1004-3268.2010.02.023
    [22] Lin X W, Xie Z B, Zheng J Y, et al. Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. European Journal of Soil Science, 2015, 66: 329-338.
    [23] Sun J, He F, Shao H, et al. Effects of biochar application on Suaeda salsa growth and saline soil properties. Environmental Earth Sciences, 2016, 75: 1-6.
    [24] 刘东让, 董邵云, 苗 晗, 等. 黄瓜耐盐胁迫遗传育种研究进展[J]. 中国蔬菜, 2021, (7): 14 − 23.
    [25] 曹齐卫, 李利斌, 孔素萍, 等. 不同黄瓜品种幼苗对等渗Mg(NO3)2和NaCl胁迫的生理响应[J]. 应用生态学报, 2015, 26(4): 1171 − 1178.
    [26] Hasanuzzaman M, Raihan M, Hossain R, et al. Biochar and chitosan regulate antioxidant defense and methylglyoxal detoxification systems and enhance salt tolerance in jute (Corchorus olitorius L. )[J]. Antioxidants, 2021, 10: 2017. doi: 10.3390/antiox10122017
    [27] Mehmood S, Ahmed W, Ikram M, et al. Chitosan modified biochar increases soybean (Glycine max L. ) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes[J]. Plants, 2020, 9: 1173. doi: 10.3390/plants9091173
    [28] 周翠香, 孙军娜, 张馨文, 等. 生物炭对盐地碱蓬抗氧化酶活性及渗透调节物质含量的影响[J]. 鲁东大学学报:自然科学版, 2019, 35(2): 110 − 115.
    [29] 王素平, 贾永霞, 郭世荣, 等. 多胺对盐胁迫下黄瓜(Cucumis sativus L. )幼苗体内K + 、Na + 和Cl含量及器官间分布的影响[J]. 生态学报, 2007, 27(3): 1122 − 1129. doi: 10.3321/j.issn:1000-0933.2007.03.037
    [30] Akhtar S S, Andersen M N, Liu F. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress[J]. Agricultural Water Management, 2015, 158: 61 − 68. doi: 10.1016/j.agwat.2015.04.010
    [31] Lashari M S, Ye Y X, Ji H S, et al. Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment[J]. Journal of the Science of Food & Agriculture, 2015, 95(6): 1321 − 1327.
    [32] Xu G, Sun J N, Shao H B, et al. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity[J]. Ecological Engineering, 2014, 62: 54 − 60. doi: 10.1016/j.ecoleng.2013.10.027
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  29
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 录用日期:  2022-03-31
  • 修回日期:  2022-03-29
  • 刊出日期:  2022-06-17

目录

    /

    返回文章
    返回