留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土地利用方式对西南喀斯特土壤碳、氮、磷化学计量特征及酶活性的影响

郭超 盛茂银 何宇 王霖娇 石庆龙 罗娜娜

郭 超, 盛茂银, 何 宇, 王霖娇, 石庆龙, 罗娜娜. 土地利用方式对西南喀斯特土壤碳、氮、磷化学计量特征及酶活性的影响[J]. 土壤通报, 2023, 54(2): 382 − 391 doi: 10.19336/j.cnki.trtb.2021121002
引用本文: 郭 超, 盛茂银, 何 宇, 王霖娇, 石庆龙, 罗娜娜. 土地利用方式对西南喀斯特土壤碳、氮、磷化学计量特征及酶活性的影响[J]. 土壤通报, 2023, 54(2): 382 − 391 doi: 10.19336/j.cnki.trtb.2021121002
GUO Chao, SHENG Mao-yin, HE Yu, WANG Lin-jiao, SHI Qing-long, LUO Na-na. Effects of Land Use Types on Soil Carbon, Nitrogen, Phosphorus Stoichiometric Characteristics and Enzyme Activities in the Karst Area of Southwest China[J]. Chinese Journal of Soil Science, 2023, 54(2): 382 − 391 doi: 10.19336/j.cnki.trtb.2021121002
Citation: GUO Chao, SHENG Mao-yin, HE Yu, WANG Lin-jiao, SHI Qing-long, LUO Na-na. Effects of Land Use Types on Soil Carbon, Nitrogen, Phosphorus Stoichiometric Characteristics and Enzyme Activities in the Karst Area of Southwest China[J]. Chinese Journal of Soil Science, 2023, 54(2): 382 − 391 doi: 10.19336/j.cnki.trtb.2021121002

土地利用方式对西南喀斯特土壤碳、氮、磷化学计量特征及酶活性的影响

doi: 10.19336/j.cnki.trtb.2021121002
基金项目: 国家自然科学基金地区项目(42107250)和贵州省科技计划项目(黔科合平台人才 [2017] 5726)资助
详细信息
    作者简介:

    郭超:郭 超(1996−),男,甘肃庆阳人,硕士研究生,主要研究领域为喀斯特生态建设与区域经济。E-mail: 1017411462@qq.com

    通讯作者:

    E-mail: shmoy@163.com

  • 中图分类号: X171

Effects of Land Use Types on Soil Carbon, Nitrogen, Phosphorus Stoichiometric Characteristics and Enzyme Activities in the Karst Area of Southwest China

  • 摘要:   目的  探究西南喀斯特土壤碳(C)、氮(N)、磷(P)化学计量特征和酶活性对不同土地利用方式的响应,有利于为西南喀斯特的土地利用调控与生态修复提供决策支持。  方法  本研究以喀斯特高原峡谷(贵州省关岭县花江研究区)亚热带森林(SUF)、疏林(SPF)、灌木林(SHF)、草地(GL)、玉米地(CL)、裸地(BL)及弃荒地(AL)的土壤为研究对象,通过采集其0 ~ 15 cm土层样品,分析土壤C、N、P化学计量特征及酶活性的差异。  结果  ①土壤有机碳含量(SOC)和全氮(TN)含量表现为SPF > AL > BL > SHF > CL > SUF > GL,土壤全磷(TP)含量表现为AL > BL > CL > SPF > GL > SHF > SUF。C∶N表现为SUF > AL > SPF > SHF > CL > BL > GL,C∶P表现为SPF > SUF > SHF > CL > AL > GL > BL,N∶P表现为SPF > SHF > SUF > CL > GL > AL > BL。土壤微生物量碳(MBC)含量则是SPF > SHF > CL > AL > SUF > BL > GL。②脲酶(URE)活性表现为SUF > CL > SPF > SHF > AL > GL > BL,蔗糖酶(SUC)活性表现为BL > AL > SPF > CL > SHF > GL > SUF,碱性磷酸酶(ALP)活性表现为SUF > BL > SHF > SPF > AL > CL > GL,过氧化氢酶(CAT)活性则是CL > AL > BL > SHF > SPF > GL > SUF。③URE与C∶P、N∶P、MBC极显著正相关,与C∶N显著正相关,与TP显著负相关;SUC与TP极显著正相关,与SOC、TN显著正相关;ALP与C∶N、C∶P显著正相关;CAT与TP极显著正相关,与TN显著正相关,与C∶P显著负相关。④在前两个排序轴中土壤理化因子累计解释了土壤酶活性变化的84.83%,按重要性排序依次为pH > 土壤温度 > TP > C∶P > TN > 容重 > SOC > C∶N > N∶P > MBC。  结论  不同土地利用方式土壤C、N、P化学计量特征及酶活性存在显著差异,土壤N∶P < 14表明土壤养分主要受氮限制。影响酶活性的主要土壤理化因子为土壤pH、土壤温度和土壤全磷。
  • 图  1  研究区位置与样地设置

    Figure  1.  Location of the study area and sample plot setting

    图  2  不同土地利用方式土壤脲酶、蔗糖酶、碱性磷酸酶及过氧化氢酶的活性

    同一幅图中不同字母之间表示存在显著差异(P < 0.05)。

    Figure  2.  Activities of soil urease, sucrase, alkaline phosphatase and catalase in different land-use types

    图  3  土壤酶活性与土壤理化因子的RDA分析

    URE表示脲酶,SUC表示蔗糖酶,ALP表示碱性磷酸酶,CAT表示过氧化氢酶,pH表示酸碱度,Bulk density表示容重,Soil temperature表示土壤温度,MBC表示微生物量碳,SOC表示土壤有机碳,TN表示全氮,TP表示全磷,C∶N表示有机碳∶全氮,C∶P表示有机碳∶全磷,N∶P表示全氮∶全磷。

    Figure  3.  Redundancy analysis of soil enzyme activities and soil physicochemical factors

    表  1  样地基本信息

    Table  1.   Sample basic information

    土地利用方式
    Land use type
    经度
    Longitude
    (E)
    纬度
    Latitude
    (N)
    海拔
    Altitude
    (m)
    坡向
    Slope direction
    坡度
    Slope degree
    土壤温度
    Soil temperature
    (℃)
    土壤容重
    Soil bulk density
    (g cm–3
    土壤pH
    Soil pH
    人类活动强度
    Human activity intensity
    亚热带森林SUF 105°40′49″ 25°40′20″ 789.73 SE 46° 25.17 1.37 5.02 轻度
    疏林SPF 105°38′19″ 25°41′28″ 694.28 SE 43° 28.37 1.07 7.95 中度
    灌木林SHF 105°39′12″ 25°41′08″ 797.13 SE 47° 28.80 1.16 8.23 中度
    草地GL 105°38′27″ 25°41′13″ 703.65 SE 32° 30.00 1.12 7.99 强烈
    玉米地CL 105°37′44″ 25°41′27″ 726.13 SE 41° 28.57 1.31 8.00 极强烈
    裸地BL 105°40′22″ 25°40′28″ 802.18 SE 40° 28.00 0.91 6.62 轻度
    弃荒地AL 105°39′20″ 25°40′54″ 778.95 SE 46° 30.77 1.10 8.16 轻度
      注:人类活动强度根据采样点周围耕地和人类活动迹象判断,可将其强度大小分为无、轻度、中度、强烈、极强烈。
    下载: 导出CSV

    表  2  不同土地利用方式土壤C、N、P含量及其化学计量比

    Table  2.   Soil C, N, P contents and their stoichiometric ratios in different land-use types

    土地利用方式
    Land use type
    土壤有机碳
    Soil organic carbon
    (g kg–1
    土壤全氮
    Soil total nitrogen
    (g kg–1
    土壤全磷
    Soil total phosphorus
    (g kg–1
    C∶NC∶PN∶P土壤微生物量碳
    Soil microbial biomass carbon
    (mg kg–1
    亚热带森林SUF 19.06 ± 2.48 c 0.82 ± 0.22 cd 0.27 ± 0.06 c 23.77 ± 3.51 a 72.28 ± 5.94 a 3.06 ± 0.19 b 328.39 ± 39.12 c
    疏林SPF 43.55 ± 4.95 a 2.08 ± 0.53 a 0.57 ± 0.13 b 21.47 ± 3.18 ab 77.15 ± 8.25 a 3.61 ± 0.15 a 902.44 ± 79.01 a
    灌木林SHF 23.56 ± 3.15 c 1.28 ± 0.33 bcd 0.39 ± 0.09 bc 18.86 ± 2.39 abc 60.63 ± 5.05 b 3.22 ± 0.14 b 648.27 ± 40.70 b
    草地GL 9.99 ± 1.05 d 0.69 ± 0.18 d 0.40 ± 0.09 bc 14.95 ± 2.39 c 25.61 ± 2.99 cd 1.72 ± 0.07 d 163.64 ± 7.60 d
    玉米地CL 20.58 ± 2.57 c 1.22 ± 0.29 bcd 0.60 ± 0.13 b 17.24 ± 2.04 bc 34.78 ± 3.36 c 2.02 ± 0.05 c 566.46 ± 42.14 b
    裸地BL 23.69 ± 3.13 c 1.41 ± 0.32 abc 1.06 ± 0.23 a 17.10 ± 1.72 bc 22.69 ± 1.98 d 1.33 ± 0.02 e 327.29 ± 6.67 c
    弃荒地AL 34.16 ± 4.75 b 1.62 ± 0.42 ab 1.09 ± 0.23 a 21.51 ± 2.74 ab 31.68 ± 2.36 cd 1.48 ± 0.08 e 369.97 ± 41.30 c
      注:同一列中不同字母之间表示存在显著差异(P < 0.05)。
    下载: 导出CSV

    表  3  土壤酶活性与土壤C、N、P含量及其化学计量比的相关系数

    Table  3.   Correlation coefficients of soil enzyme activities and soil C, N, P contents and their stoichiometric ratios

    土壤酶活性
    Soil enzyme activity
    土壤有机碳
    Soil organic carbon
    土壤全氮
    Soil total nitrogen
    土壤全磷
    Soil total phosphorus
    C∶NC∶PN∶P土壤微生物量碳
    Soil microbial biomass carbon
    脲酶URE 0.268 0.130 −0.489* 0.466* 0.726** 0.708** 0.606**
    蔗糖酶SUC 0.539* 0.533* 0.733** −0.009 −0.319 −0.379 0.214
    碱性磷酸酶ALP −0.119 −0.253 −0.260 0.524* 0.443* 0.273 −0.183
    过氧化氢酶CAT 0.352 0.463* 0.663** −0.285 −0.478* −0.410 0.294
      注:*表示P < 0.05; **表示P < 0.01。
    下载: 导出CSV

    表  4  土壤酶活性特征值与解释量的RDA排序分析

    Table  4.   RDA sequencing analysis of soil enzyme activity eigenvalues and interpretations

    排序轴
    Statistic
    第Ⅰ轴
    AxisⅠ
    第Ⅱ轴
    Axis Ⅱ
    第Ⅲ轴
    Axis Ⅲ
    第Ⅳ轴
    Axis Ⅳ
    土壤酶特征解释量 63.79 21.04 5.49 1.35
    土壤酶活性与土壤理化因子的相关性 0.9667 0.9538 0.9185 0.7994
    土壤酶特征累计解释量 63.79 84.83 90.32 91.66
    土壤酶活性-土壤理化因子的累计解释量 69.59 92.54 98.53 100.00
    典范特征值 0.7994
    总特征值 1.00
    下载: 导出CSV

    表  5  土壤理化因子解释的重要性排序和显著性检验结果

    Table  5.   Importance ranking and significance test results of soil physicochemical factor interpretations

    土壤理化因子
    Soil
    physicochemical
    factor
    重要性排序
    Importance
    ranking
    解释量
    Explanatory
    quantity
    (%)
    重要性
    Importance
    显著性
    Significance
    pH 1 49.1 18.3 0.002
    土壤温度 2 40.3 12.8 0.002
    全磷 3 31.8 8.8 0.006
    C∶P 4 19.9 4.7 0.014
    TN 5 19.3 4.5 0.014
    容重 6 17.0 3.9 0.024
    土壤有机碳 7 16.3 3.7 0.046
    C∶N 8 14.6 3.3 0.074
    N∶P 9 14.4 3.2 0.054
    土壤微生物量碳 10 8.5 1.8 0.218
    下载: 导出CSV
  • [1] Kooch Y, Tavakoli M, Akbarinia M. Tree species could have substantial consequences on topsoil fauna: a feedback of land degradation/restoration[J]. European Journal of Forest Research, 2018, 137: 793 − 805. doi: 10.1007/s10342-018-1140-1
    [2] 鹿士杨, 彭晚霞, 宋同清, 等. 喀斯特峰丛洼地不同退耕还林还草模式的土壤微生物特性[J]. 生态学报, 2012, 32(8): 2390 − 2399.
    [3] Zhao D, Li F, Yang Q, et al. The influence of different types of urban land use on soil microbial biomass and functional diversity in Beijing, China[J]. Soil Use and Management, 2013, 29(2): 230 − 239. doi: 10.1111/sum.12034
    [4] Meena A, Rao K S. Assessment of soil microbial and enzyme activity in the rhizosphere zone under different land use/cover of a semiarid region, India[J]. Ecological Processes, 2021, 10(16): 1 − 12.
    [5] Moreau D, Bardgett R D, Finlay R D, et al. A plant perspective on nitrogen cycling in the rhizosphere[J]. Functional Ecology, 2019, 33(4): 540 − 552. doi: 10.1111/1365-2435.13303
    [6] 孙彩丽, 王艺伟, 王从军, 等. 喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响[J]. 生态学报, 2021, 41(10): 1 − 10.
    [7] 李亚娟, 刘 静, 徐长林, 等. 不同退化程度对高寒草甸土壤无机氮及脲酶活性的影响[J]. 草业学报, 2018, 27(10): 45 − 53. doi: 10.11686/cyxb2018098
    [8] 蒋永梅, 师尚礼, 田永亮, 等. 高寒草地不同退化程度下土壤微生物及土壤酶活性变化特征[J]. 水土保持学报, 2017, 31(3): 244 − 249.
    [9] Han W X, Fang J Y, Guo D L, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2): 377 − 385. doi: 10.1111/j.1469-8137.2005.01530.x
    [10] Wu H H, Xu X K, Cheng W G, et al. Dissolved organic matter and inorganic N jointly regulate greenhouse gases fluxes from forest soils with different moistures during a freeze-thaw period[J]. Soil Science and Plant Nutrition, 2019, (3): 1 − 14.
    [11] 关松荫, 张德生, 张志明. 土壤酶及其研究法[M]. 北京: 中国农业出版社, 1986, 274 − 323.
    [12] 宁沐蕾, 高唤唤, 黄天颖, 等. 崇明岛土地利用方式对土壤酶活性的影响[J]. 生态学杂志, 2017, 36(7): 1949 − 1956.
    [13] Aponte H, Medina J, Butler B, et al. Soil quality indices for metal (loid) contamination: An enzymatic perspective[J]. Land Degradation and Development, 2020, 31: 2700 − 2719. doi: 10.1002/ldr.3630
    [14] 钱庆欢, 王世杰, 白晓永, 等. 基于允许流失量和正负地形源汇理论的喀斯特关键带土壤侵蚀研究[J]. 地理学报, 2018, 73(11): 2135 − 2149. doi: 10.11821/dlxb201811007
    [15] Sheng M Y, Xiong K N, Wang L J, et al. Response of soil physical and chemical properties to rocky desertification succession in South China Karst[J]. Carbonates and Evaporites, 2016, 33(1): 15 − 28.
    [16] 赵 楚, 盛茂银, 白义鑫, 等. 喀斯特石漠化地区不同土地利用类型土壤氮磷有效性及其环境影响因子[J]. 应用生态学报, 2021, 32(4): 1383 − 1392.
    [17] Li S, Sheng M Y, Yuan F Y, et al. Effect of land cover change on total SOC and soil PhytOC accumulation in the karst subtropical forest ecosystem, SW China[J]. Journal of Soils and Sediments, 2021, 21(7): 2566 − 2577. doi: 10.1007/s11368-021-02970-7
    [18] Hu Q J, Sheng M Y, Bai Y X, et al. Response of C, N, and P stoichiometry characteristics of Broussonetia papyrifera to altitude gradients and soil nutrients in the karst rocky ecosystem, SW China[J]. Plant and Soil, 2020, (14): 1 − 14.
    [19] Li C L, Cao Z Y, Chang J J, et al. Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibet alpine meadow[J]. Catena, 2017, 156: 139 − 148. doi: 10.1016/j.catena.2017.04.007
    [20] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000, 30 − 83.
    [21] 盛茂银, 熊康宁, 崔高仰, 等. 贵州喀斯特石漠化地区植物多样性与土壤理化性质[J]. 生态学报, 2015, 35(2): 434 − 448.
    [22] Calbrix R, Barray S, Chabrerie O, et al. Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land[J]. Applied Soil Ecology, 2007, 35(3): 511 − 522. doi: 10.1016/j.apsoil.2006.10.007
    [23] Parseval H, Abbadie L, Barot S, et al. Explore less to control more: why and when should plants limit the horizontal exploration of soil by their roots[J]. Oikos, 2015, 125(8): 1110 − 1120.
    [24] 吴丽芳, 王紫泉, 王 妍, 等. 喀斯特高原不同石漠化程度土壤C、N、P化学计量特征和酶活性的关系[J]. 生态环境学报, 2019, 28(12): 2332 − 2340.
    [25] 俞月凤, 彭晚霞, 宋同清, 等. 喀斯特峰丛洼地不同森林类型植物和土壤C、N、P化学计量特征[J]. 应用生态学报, 2014, 25(4): 947 − 954.
    [26] 曾昭霞, 王克林, 刘孝利, 等. 桂西北喀斯特森林植物-凋落物-土壤生态化学计量特征[J]. 植物生态学报, 2015, 39(7): 682 − 693. doi: 10.17521/cjpe.2015.0065
    [27] 汤 茜, 丁访军, 朱四喜, 等. 茂兰喀斯特地区不同植被演替阶段对土壤化学性质与酶活性的影响[J]. 生态环境学报, 2020, 29(10): 1943 − 1952.
    [28] 廖全兰, 龙翠玲, 薛 飞, 等. 茂兰喀斯特森林不同地形土壤酶活性及养分特征[J]. 森林与环境学报, 2020, 40(2): 164 − 170.
    [29] 秦仕忆, 喻阳华, 邢容容, 等. 喀斯特高原山地区水源涵养林土壤及凋落物的生态化学计量特征[J]. 林业资源管理, 2017, (5): 66 − 73.
    [30] Ahmad E H, Demisie W, Zhang M. Effects of land use on concentrations and chemical forms of phosphorus in different-size aggregates[J]. Eurasian Soil Science, 2017, 50(12): 1435 − 1443. doi: 10.1134/S1064229317120110
    [31] 陆远鸿, 曹 昀, 许令明, 等. 鄱阳湖沙化土地植物-凋落物-土壤化学计量特征[J]. 生态学杂志, 2019, 38(2): 329 − 335.
    [32] 张 萍, 章广琦, 赵一娉, 等. 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征[J]. 生态学报, 2018, 38(14): 5087 − 5098.
    [33] 闫丽娟, 王海燕, 李 广, 等. 黄土丘陵区4种典型植被对土壤养分及酶活性的影响[J]. 水土保持学报, 2019, 33(5): 190 − 204.
    [34] Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C: N: P rations in China, s soils: synthesis of observational data[J]. Biogeochemistry, 2010, 98(1/3): 139 − 151.
    [35] Reich P B, Oleksyn L. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 11001 − 11006. doi: 10.1073/pnas.0403588101
    [36] 田 静, 盛茂银, 汪 攀, 等. 西南喀斯特土地利用变化对植物凋落物-土壤 C、N、P 化学计量特征和土壤酶活性的影响[J]. 环境科学, 2019, 40(9): 4278 − 4286.
    [37] 刘立斌, 钟巧连, 倪 健. 贵州高原型喀斯特次生林C、N、P生态化学计量特征与储量[J]. 生态学报, 2019, 39(22): 8606 − 8614.
    [38] 孙 毅, 和润莲, 何光熊, 等. 滇西并流河谷区土壤酶活性化学计量学特征与环境因子的关系[J]. 应用生态学报, 2021, 32(4): 1269 − 1278.
    [39] 钟泽坤, 杨改河, 任成杰, 等. 黄土丘陵区撂荒农田土壤酶活性及酶化学计量变化特征[J]. 环境科学, 2021, 42(1): 411 − 421.
    [40] Liu J B, Chen J, Chen G S, et al. Enzyme stoichiometric indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests[J]. PLoS One, 2020, 15(2): 1 − 17.
    [41] Zhang W, Xu Y D, Gao D X, et al. Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China[J]. Soil Biology Biochemistry, 2019, 134: 1 − 14. doi: 10.1016/j.soilbio.2019.03.017
    [42] Yang J, Xu X L, Liu M X, et al. Effects of “grain of Green” program on soil hydrologic functions in Karst Landscapes, Southwestern China[J]. Agriculture, Ecosystems and Environment, 2017, 247: 120 − 129. doi: 10.1016/j.agee.2017.06.025
    [43] Kong C H, Wang P, Zhao H, et al. Impact of allelochemical exuded from allelopathic rice on soil microbial community[J]. Soil Biology and Biochemistry, 2008, 40(7): 1862 − 1869. doi: 10.1016/j.soilbio.2008.03.009
    [44] Stauffer M, Leyval C, Brun J J, et al. Effect of willow short rotation coppice on soil properties after three years of growth as compared to forest, grassland and arable land uses[J]. Plant and Soil, 2014, 377(1-2): 423 − 438. doi: 10.1007/s11104-013-1986-4
    [45] Silva É O, de Medeiros E V, Duda G P, et al. Seasonal effect of land use type on soil absolute and specific enzyme activities in a Brazilian semi-arid region[J]. Catena, 2019, 172: 397 − 407. doi: 10.1016/j.catena.2018.09.007
    [46] Uren N C. Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants[M]. Boca Raton: Chemical Rubber Company Press, 2007.
    [47] 王 涵, 王 果, 黄颖颖, 等. pH变化对酸性土壤酶活性的影响[J]. 生态环境, 2008, 17(6): 2401 − 2406.
    [48] 李艳红, 朱海强, 方丽章, 等. 艾比湖湿地植物群落土壤酶活性特征及影响因素[J]. 生态学报, 2020, 40(2): 549 − 559.
    [49] 曹向文, 赵洋毅, 熊好琴, 等. 滇东喀斯特石漠化地区不同植被模式土壤酶活性与有机碳[J]. 东北林业大学学报, 2015, 43(11): 79 − 83. doi: 10.3969/j.issn.1000-5382.2015.11.016
    [50] 莫 雪, 陈斐杰, 游 冲, 等. 黄河三角洲不同植物群落土壤酶活性特征及影响因子分析[J]. 环境科学, 2020, 41(2): 895 − 904.
    [51] 汪子微, 万松泽, 蒋洪毛, 等. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528 − 538. doi: 10.17521/cjpe.2020.0139
    [52] 李 娜, 黄 金, 耿玉清, 等. 青海湖湖滨不同土地类型土壤酶活性的研究[J]. 北京林业大学学报, 2019, 41(10): 49 − 56.
    [53] 何 斌, 李 青, 冯 图, 等. 黔西北不同林龄马尾松人工林针叶-凋落物-土壤C、N、P化学计量特征[J]. 生态环境学报, 2019, 28(11): 2149 − 2157.
    [54] Soares M, Rousk J. Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry[J]. Soil Biology and Biochemistry, 2019, 131: 195 − 205. doi: 10.1016/j.soilbio.2019.01.010
    [55] De Barros J A, De Medriros E V, Da Costa D P, et al. Human disturbance affects enzyme activity, microbial biomass and organic carbon in tropical dry sub-humid pasture and forest soils[J]. Archives of Agronomy and Soil Science, 2020, 66(4): 458 − 472. doi: 10.1080/03650340.2019.1622095
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  36
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 录用日期:  2022-06-10
  • 修回日期:  2022-05-16
  • 刊出日期:  2023-04-06

目录

    /

    返回文章
    返回