留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤重金属潜在生态风险指数法优化研究

吴梅 刘属灵 袁余洋 赵家宇 刘怡 刘双燕 刘永林

吴 梅, 刘属灵, 袁余洋, 赵家宇, 刘 怡, 刘双燕, 刘永林. 土壤重金属潜在生态风险指数法优化研究−以重庆市城口县为例[J]. 土壤通报, 2023, 54(2): 473 − 480 doi: 10.19336/j.cnki.trtb.2022021002
引用本文: 吴 梅, 刘属灵, 袁余洋, 赵家宇, 刘 怡, 刘双燕, 刘永林. 土壤重金属潜在生态风险指数法优化研究−以重庆市城口县为例[J]. 土壤通报, 2023, 54(2): 473 − 480 doi: 10.19336/j.cnki.trtb.2022021002
WU Mei, LIU Shu-ling, YUAN Yu-yang, ZHAO Jia-yu, LIU Yi, LIU Shuang-yan, LIU Yong-lin. Optimization of Potential Ecological Risk Index Method for Soil Heavy Metals——A Case Study of Chengkou County, Chongqing City[J]. Chinese Journal of Soil Science, 2023, 54(2): 473 − 480 doi: 10.19336/j.cnki.trtb.2022021002
Citation: WU Mei, LIU Shu-ling, YUAN Yu-yang, ZHAO Jia-yu, LIU Yi, LIU Shuang-yan, LIU Yong-lin. Optimization of Potential Ecological Risk Index Method for Soil Heavy Metals——A Case Study of Chengkou County, Chongqing City[J]. Chinese Journal of Soil Science, 2023, 54(2): 473 − 480 doi: 10.19336/j.cnki.trtb.2022021002

土壤重金属潜在生态风险指数法优化研究以重庆市城口县为例

doi: 10.19336/j.cnki.trtb.2022021002
基金项目: 国家自然科学基金项目(41502329)、重庆市教育委员会科学技术计划项目(KJZDK202100504; KJQN201900519)和重庆市研究生科研创新项目(CYS22560)资助
详细信息
    作者简介:

    吴梅:吴 梅 (1996− ),女,四川宜宾人,在读研究生,主要研究方向:土壤环境地球化学。E-mail: wm1614110233@163.com

    通讯作者:

    E-mail: liu3986130@163.com

  • 中图分类号: X53, X820.4

Optimization of Potential Ecological Risk Index Method for Soil Heavy Metals——A Case Study of Chengkou County, Chongqing City

  • 摘要:   目的  优化潜在生态风险指数评价标准,使其更适用于土壤重金属污染评价。  方法  参考瑞典学者Håkanson的方法,以城口县115件表层土壤中镉(Cd)、铬(Cr)、铜(Cu)、镍(Ni)、铅(Pb)和锌(Zn)等6种重金属为研究对象,基于重金属毒性系数,并结合内梅罗综合污染指数法(PN),以期验证潜在生态风险指数(RI)评价标准优化的适用性。  结果  ① 优化了土壤中6种重金属潜在生态风险评价分级体系:RI < 60,60 ≤ RI < 120,120 ≤ RI < 240,240 ≤ RI < 480,RI ≥ 480分别代表轻微、中等、强、很强、极强潜在生态风险。 ② 案例区6种重金属含量均值(算术均值,下同)分别为中国农用地土壤风险筛选值的5.0、0.39、0.52、0.44、0.23和0.76倍。③ 内梅罗污染评价显示,Cd处于重度污染[Pi(Cd) = 5.25],其余重金属处于无污染水平,PN显示土壤重金属整体处于重度污染(PN = 3.94)。④潜在生态风险评价结果显示,RI介于22.9 ~ 1582,均值196。优化前,案例区土壤6种重金属处于中等生态风险(优化前分级,150 ≤ RI < 300),而优化后处于强潜在生态风险。  结论  案例验证研究表明,优化后的潜在生态风险评价分级体系适合土壤重金属污染潜在生态风险评价,能客观反映土壤重金属污染状况。
  • 图  1  重庆市行政区划及采样点分布图

    Figure  1.  Administrative division of Chongqing and distribution of sampling points

    图  2  土壤重金属污染特征

    Pi(Cd)、Pi(Cr)、Pi(Cu)、Pi(Ni)、Pi(Pb)、Pi(Zn)分别表示各重金属的单因子污染指数,PN表示土壤重金属的内梅罗综合污染指数。下同。

    Figure  2.  Pollution characteristics of soil heavy metals

    图  3  土壤重金属潜在生态风险指数

    Figure  3.  Potential ecological risk index of heavy metals in soil

    图  4  优化前后潜在生态风险等级对比

    Figure  4.  Comparison of potential ecological risk levels before and after optimization

    表  1  Håkanson原文中潜在生态风险系数和指数评价标准[27]

    Table  1.   Grading standards of potential ecological risk in the original manuscript of Håkanson [27]

    潜在生态风险系数Eri
    Potential ecological
    risk factor
    潜在生态风险指数RI
    Potential ecological
    risk index
    生态危害等级
    Ecological hazard
    level
    < 40 < 150 轻微
    40 ~ 80 150 ~ 300 中等
    80 ~ 160 300 ~ 600
    160 ~ 320 ≥ 600 很强
    ≥ 320 极强
    下载: 导出CSV

    表  2  优化后的潜在生态风险系数和指数评价标准

    Table  2.   Optimized grading standards of potential ecological risk

    潜在生态风险系数与指数
    Potential ecological risk factor and index
    元素
    Element
    生态危害等级
    Ecological hazard level
    轻微
    Low
    中等
    Moderate

    Considerable
    很强
    High
    极强
    Very high
    Eri Cd < 30 30 ~ 60 60 ~ 120 120 ~ 240 ≥ 240
    Cr < 2 2 ~ 4 4 ~ 8 8 ~ 16 ≥ 16
    Cu < 5 5 ~ 10 10 ~ 20 20 ~ 40 ≥ 40
    Ni < 5 5 ~ 10 10 ~ 20 20 ~ 40 ≥ 40
    Pb < 5 5 ~ 10 10 ~ 20 20 ~ 40 ≥ 40
    Zn < 1 1 ~ 2 2 ~ 4 4 ~ 8 ≥ 8
    RI < 60 60 ~ 120 120 ~ 240 240 ~ 480 ≥ 480
    下载: 导出CSV

    表  3  土壤重金属含量统计特征

    Table  3.   Content statistical characteristics of heavy metals in soil

    元素
    Element
    最大值
    Maximum
    (mg kg–1)
    最小值
    Minimum
    (mg kg–1)
    算术均值
    Arithmetic mean
    (mg kg–1)
    标准差
    Standard deviant
    变异系数
    Coefficient of variation
    (%)
    Cd 14.0 0.1 1.5 2.1 139.0
    Cr 301.0 27.4 79.5 31.9 40.0
    Cu 224.0 6.1 51.8 33.5 65.0
    Ni 158.0 16.8 44.7 22.1 49.0
    Pb 58.7 6.5 27.9 7.6 27.0
    Zn 819.0 26.5 191.0 138.0 72.0
    下载: 导出CSV
  • [1] Bhatti S S, Kumar V, Sambyal V, et al. Comparative analysis of tissue compartmentalized heavy metal uptake by common forage crop: A field experiment[J]. Catena, 2018, 160: 185 − 193. doi: 10.1016/j.catena.2017.09.015
    [2] Weber A M, Mawodza T, Sarkar B, et al. Assessment of potentially toxic trace element contamination in urban allotment soils and their uptake by onions: A preliminary case study from Sheffield, England[J]. Ecotoxicology and Environmental Safety, 2019, 170: 156 − 165. doi: 10.1016/j.ecoenv.2018.11.090
    [3] Cheng X F, Drozdova J, Danek T, et al. Pollution assessment of trace elements in agricultural soils around copper mining area[J]. Sustainability, 2018, 10(12): 4533. doi: 10.3390/su10124533
    [4] 刘永林, 刘属灵, 吴 梅, 等. 西南典型“退耕还林”区土地利用/覆被变化对土壤中硒及重金属含量的影响[J]. 环境科学, DOI: 10.13227/j.hjkx.202109035.
    [5] Zhang P, Qin C, Hong X, et al. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of yellow river irrigation in China[J]. Science of the Total Environment, 2018, 633: 1136 − 1147. doi: 10.1016/j.scitotenv.2018.03.228
    [6] 纪文贵, 王 珂, 蒙建波, 等. 中国土壤重金属污染状况及其风险评价[J]. 农业研究与应用, 2020, 33(5): 22 − 28. doi: 10.3969/j.issn.2095-0764.2020.05.006
    [7] 姜 瑢, 吕贻忠, 申思雨. 华北地区有机种植和常规种植模式下土壤重金属含量及污染评价[J]. 中国生态农业学报, 2015, 23(7): 877 − 885.
    [8] Julin B, Wolk A, Thomas L D, et al. Exposure to cadmium from food and risk of cardiovascular disease in men: a population-based prospective cohort study[J]. European Journal of Epidemiology, 2013, 28(10): 837 − 840. doi: 10.1007/s10654-013-9841-8
    [9] 吕建树, 张祖陆, 刘 洋, 等. 日照市土壤重金属来源解析及环境风险评价[J]. 地理学报, 2012, 67(7): 971 − 984. doi: 10.11821/xb201207010
    [10] 叶 秀, 曹兆进, 王 强, 等. 铬的生物标志物及其在健康影响评价中的应用[J]. 环境与健康杂志, 2015, 32(4): 366 − 369.
    [11] 余 杰. 典型镉污染区长住居民镉暴露与健康影响研究[D]. 北京: 北京交通大学, 2018.
    [12] 韩晋仙, 马建华, 魏林衡. 污灌对潮土重金属含量及分布的影响−以开封市化肥河污灌区为例[J]. 土壤, 2006, 38(3): 292 − 297. doi: 10.3321/j.issn:0253-9829.2006.03.010
    [13] 郑国璋. 陕北黄土丘陵区农田土壤重金属污染及潜在生态风险评价[J]. 土壤通报, 2013, 44(6): 1491 − 1495.
    [14] 吴 琼, 赵同科, 邹国元, 等. 北京东南郊农田土壤重金属含量与环境质量评价[J]. 中国土壤与肥料, 2016, (1): 7 − 12. doi: 10.11838/sfsc.20160102
    [15] 康国华, 张鹏岩, 李颜颜, 等. 黄河下游开封段引黄灌区小麦中重金属污染特征及健康风险评价[J]. 环境科学, 2018, 39(8): 3917 − 3926.
    [16] 谢志宜, 张雅静, 陈丹青, 等. 土壤重金属污染评价方法研究−以广州市为例[J]. 农业环境科学学报, 2016, 35(7): 1329 − 1337. doi: 10.11654/jaes.2016.07.015
    [17] 张成丽, 张伟平, 程红丹, 等. 禹州市煤矿区周边土壤和农作物重金属污染状况及健康风险评价[J]. 环境化学, 2019, 38(4): 805 − 812. doi: 10.7524/j.issn.0254-6108.2018060502
    [18] Zhang H X, Cai A Z, Wang X J, et al. Risk Assessment and Source Apportionment of Heavy Metals in Soils from Handan City[J]. Applied Sciences, 2021, 11(20): 9615 − 9615. doi: 10.3390/app11209615
    [19] Meng T T, Lu Z. Distribution of Heavy Metal Content in Reclaimed Soil of Construction Land[J]. International Core Journal of Engineering, 2021, 7(10): 314 − 317.
    [20] Hu H J, Han L, Li L Z, et al. Soil heavy metal pollution source analysis based on the land use type in Fengdong District of Xi'an, China[J]. Environmental monitoring and assessment, 2021, 193(10): 643. doi: 10.1007/s10661-021-09377-4
    [21] Li X L, Wu X. Study on the Effects of Sewage Irrigation on Soil[J]. Nature Environment and Pollution Technology, 2021, 20(1): 335 − 340. doi: 10.46488/NEPT.2021.v20i01.038
    [22] Li L M, Wu J, Lu J, et al. Trace elements in Gobi soils of the northeastern Qinghai-Tibet Plateau[J]. Chemistry and Ecology, 2020, 36(10): 967 − 981. doi: 10.1080/02757540.2020.1817403
    [23] Chi T V, Lin C, Shern C C, et al. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan[J]. Ecological Indicators, 2017, 82: 32 − 42. doi: 10.1016/j.ecolind.2017.06.008
    [24] Ihedioha J N, Ukoha P O, Ekere N R. Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria[J]. Environmental Geochemistry and Health, 2017, 39(3): 497 − 515. doi: 10.1007/s10653-016-9830-4
    [25] Jahandari A. Pollution status and human health risk assessments of selected heavy metals in urban dust of 16 cities in Iran[J]. Environmental Science and Pollution Research, 2020, 27(18): 23094 − 23107. doi: 10.1007/s11356-020-08585-8
    [26] Yang Y Y, Zhang J X, Xiao x, et al. Speciation and Potential Ecological Risk of Heavy Metals in Soils from Overlapped Areas of Farmland and Coal Resources in Northern Xuzhou, China[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 7(6): 1 − 6.
    [27] Håkanson L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8): 975 − 1001. doi: 10.1016/0043-1354(80)90143-8
    [28] 李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价[J]. 环境科学, 2015, 36(3): 1037 − 1044.
    [29] 李周玲, 王敏捷, 邓 亚, 等. 重庆城口地区早寒武世黑色页岩地球化学特征及成矿规律[J]. 重庆科技学院学报(自然科学版), 2011, 13(6): 92 − 95.
    [30] 韩晋仙, 李二玲, 班凤梅. 常规农业村土壤重金属污染及潜在生态风险评价−山西寿阳县为例[J]. 中国土壤与肥料, 2020, (6): 246 − 253. doi: 10.11838/sfsc.1673-6257.19505
    [31] 薄录吉, 李 冰, 张荣全, 等. 金乡县大蒜产区土壤重金属特征及潜在生态风险评价[J]. 土壤通报, 2021, 52(2): 434 − 442.
    [32] 李颖慧, 姜小三, 王振华, 等. 基于土壤肥力和重金属污染风险的农用地土壤质量综合评价研究−以山东省博兴县为例[J]. 土壤通报, 2021, 52(5): 1052 − 1062.
    [33] 鲍丽然, 邓 海, 贾中民, 等. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 2020, 47(6): 1625 − 1636. doi: 10.12029/gc20200602
    [34] 周 艳, 万金忠, 李 群, 等. 铅锌矿区玉米中重金属污染特征及健康风险评价[J]. 环境科学, 2020, 41(10): 4733 − 4739.
    [35] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991, 12(4): 12 − 19,94. doi: 10.3321/j.issn:0250-3301.1991.04.015
    [36] 王 锐, 邓 海, 贾中民, 等. 地质高背景区土壤及玉米中重金属的含量及污染评价−以城口县为例[J]. 生态环境学报, 2021, 30(4): 841 − 848.
    [37] Gray C W, Mclaren R G, Roberts A H C, et al. The effect of long-term phosphatic fertiliser applications on the amounts and forms of cadmium in soils under pasture in New Zealand[J]. Nutrient Cycling in Agroecosystems, 1999, 54(3): 267 − 277. doi: 10.1023/A:1009883010490
    [38] Garcia R, Maiz I, Millan E. Heavy metal contamination analysis of road soils and grasses from Gipuzkoa (Spain)[J]. Environmental Technology, 1996, 17(7): 763 − 770. doi: 10.1080/09593331708616443
    [39] 蔡立梅, 马 瑾, 周永章, 等. 东莞市农田土壤和蔬菜重金属的含量特征分析[J]. 地理学报, 2008, 63(9): 994 − 1003. doi: 10.3321/j.issn:0375-5444.2008.09.009
    [40] 邓文兵, 张彦文, 孔令湖, 等. 中国锰矿资源现状与国家级锰矿床实物地质资料筛选[J]. 中国矿业, 2019, 28(9): 175 − 182. doi: 10.12075/j.issn.1004-4051.2019.09.001
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  360
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 录用日期:  2022-07-19
  • 修回日期:  2022-07-15
  • 刊出日期:  2023-04-06

目录

    /

    返回文章
    返回