留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深耕及培肥对砂姜黑土理化性质和小麦产量的影响

王梦宇 仝昊天 韩燕来 李培培 陈文举 毕庆生

王梦宇, 仝昊天, 韩燕来, 李培培, 陈文举, 毕庆生. 深耕及培肥对砂姜黑土理化性质和小麦产量的影响[J]. 土壤通报, 2022, 53(6): 1431 − 1439 doi: 10.19336/j.cnki.trtb.2022021301
引用本文: 王梦宇, 仝昊天, 韩燕来, 李培培, 陈文举, 毕庆生. 深耕及培肥对砂姜黑土理化性质和小麦产量的影响[J]. 土壤通报, 2022, 53(6): 1431 − 1439 doi: 10.19336/j.cnki.trtb.2022021301
WANG Meng-yu, TONG Hao-tian, HAN Yan-lai, LI Pei-pei, CHEN Wen-ju, BI Qing-sheng. Effects of Deep Tillage and Fertilization on Wheat Yield and Physicochemical Properties of Lime Concretion Black Soil[J]. Chinese Journal of Soil Science, 2022, 53(6): 1431 − 1439 doi: 10.19336/j.cnki.trtb.2022021301
Citation: WANG Meng-yu, TONG Hao-tian, HAN Yan-lai, LI Pei-pei, CHEN Wen-ju, BI Qing-sheng. Effects of Deep Tillage and Fertilization on Wheat Yield and Physicochemical Properties of Lime Concretion Black Soil[J]. Chinese Journal of Soil Science, 2022, 53(6): 1431 − 1439 doi: 10.19336/j.cnki.trtb.2022021301

深耕及培肥对砂姜黑土理化性质和小麦产量的影响

doi: 10.19336/j.cnki.trtb.2022021301
基金项目: 国家重点研发计划项目(2018YFD0200606、2017YFD0301103)资助
详细信息
    作者简介:

    王梦宇(1998−),男,河南封丘人,硕士研究生,主要从事土壤培肥研究。E-mail: wangmengyu980210@163.com

    通讯作者:

    E-mail: biqs@henau.edu.cn

  • 中图分类号: S156.9

Effects of Deep Tillage and Fertilization on Wheat Yield and Physicochemical Properties of Lime Concretion Black Soil

  • 摘要:   目的  比较不同耕作培肥方式对土壤理化性质和小麦产量的影响,以解决砂姜黑土耕层浅薄、养分容量低的问题,实现小麦优质高产。  方法  田间试验(2018 ~ 2020年)采用裂区实验设计,旋耕和深耕为主区;5种培肥方式为副区,包括:单施化肥(CK),增施有机肥15 t hm−2(15M)、有机肥22.5 t hm−2(22.5M)、生物炭15 t hm−2(15B)和生物炭22.5 t hm−2(22.5B),分土层研究土壤理化指标和小麦产量的变化。  结果  深耕、施用生物炭和有机肥均显著提高0 ~ 10 cm 土壤pH值,深耕显著提高10 ~ 30 cm土壤含水率,降低10 ~ 30 cm土壤容重和紧实度,生物炭对土壤容重和紧实度的改善优于有机肥。深耕配合生物炭或有机肥显著提高10 ~ 30 cm土层有机质和全氮含量;高量有机肥对速效养分的提升效果最佳。旋耕增施有机肥显著增加小麦赤霉病病穗率;深耕显著降低赤霉病病情指数,深耕22.5M处理比旋耕22.5M处理降低52.6%。连续2年的产量表明,深耕显著提高小麦产量,深耕配合高量生物炭和有机肥处理分别比深耕CK处理显著增产18.3%和9.0%。结构方程模型分析表明,深耕和生物炭主要通过影响土壤物理性质促进小麦增产,有机肥显著改善土壤化学性质,但高量有机肥能促进赤霉病的发生。  结论  深耕配合高量生物炭或适量有机肥有效改良砂姜黑土障碍因素并增加小麦产量。
  • 图  1  旋耕(A)和深耕(B)条件下各培肥处理土壤紧实度

    Figure  1.  Soil compaction of different fertilization treatments under rotary tillage (A) and deep tillage (B)

    图  2  耕作和培肥对小麦赤霉病病穗率和病情指数的影响

    Figure  2.  Effects of tillage and fertilization on wheat scab index and spike rate

    图  3  土壤理化结构、病害发生与小麦产量的结构方程模型

    图中实线的表示显著性相关(P < 0.05)。正值代表正相关,负值代表负相关。

    Figure  3.  Analysis of soil physicochemical factors and wheat scab affecting wheat yield in the use of structural equation modeling

    表  1  2020年小麦成熟期0 ~ 10 cm土层理化性质

    Table  1.   The nutrient contents of the 0 ~ 10 cm soil layer at the maturity of wheat in 2020

    处理
    Treatment
    容重
    Bulk density
    (g cm−3
    含水率
    Moisture(%)
    pH有效磷
    Available phosphorus
    (mg kg−1
    速效钾
    Available
    potassium
    (mg kg−1
    全氮
    Total nitrogen
    (g kg−1
    硝态氮
    Nitrate nitrogen
    (mg kg−1
    有机质
    Organic matter
    (g kg−1
    旋耕CK1.5 ± 0.1 a22.1 ± 0.8 abc5.2 ± 0.3 bc25.9 ± 9.2 b169.0 ± 15.4 b1.2 ± 0.1 bc29.7 ± 3.6 b22.2 ± 2.0 b
    15M1.4 ± 0.0 ab22.2 ± 0.1 c5.3 ± 0.1 abc57.5 ± 6.2 a230.7 ± 15.3 a1.6 ± 0.2 a35.9 ± 5.3 ab30.3 ± 3.0 a
    22.5M1.4 ± 0.1 ab21.7 ± 0.7 bc5.1 ± 0.2 c65.7 ± 4.5 a245.7 ± 14.3 a1.6 ± 0.2 a44.7 ± 1.3 a31.7 ± 3.0 a
    15B1.4 ± 0.1 ab22.5 ± 0.4 ab5.6 ± 0.1 ab34.3 ± 4.6 b205.3 ± 45.8 ab1.4 ± 0.1 a27.5 ± 7.1 b27.3 ± 2.9 ab
    22.5B1.2 ± 0.2 b22.8 ± 0.2 a5.7 ± 0.2 a35.2 ± 8.2 b200.0 ± 32.0 ab1.1 ± 0.0 c28.2 ± 10.3 b25.7 ± 6.0 ab
    深耕CK1.4 ± 0.1 a22.1 ± 1.8 a5.3 ± 0.0 b20.4 ± 7.5 c180.3 ± 21.1 b1.2 ± 0.1 bc26.8 ± 7.2 b20.7 ± 2.3 c
    15M1.4 ± 0.0 a22.0 ± 0.8 a5.8 ± 0.1 a46.7 ± 0.7 ab229.3 ± 31.5 ab1.3 ± 0.0 b33.8 ± 4.1 ab23.0 ± 0.8 bc
    22.5M1.4 ± 0.1 a21.6 ± 0.8 a5.8 ± 0.3 a60.1 ± 21.2 a247.3 ± 16.6 a1.5 ± 0.0 a39.9 ± 9.1 a27.7 ± 2.6 a
    15B1.4 ± 0.1 a21.2 ± 1.7 a5.7 ± 0.1 a28.7 ± 3.1 bc218.7 ± 35.5 ab1.2 ± 0.1 b29.4 ± 2.7 ab25.5 ± 2.8 ab
    22.5B1.4 ± 0.1 a21.7 ± 1.2 a5.8 ± 0.2 a30.5 ± 7.5 bc212.3 ± 18.9 ab1.0 ± 0.3 c30.7 ± 3.2 ab23.6 ± 0.3 bc
    耕作方式0.3110.3190.000*0.0620.4530.001*0.6250.006*
    培肥方式0.1450.7500.004* 0.000* 0.002*0.000* 0.004*0.002*
    交互作用0.5770.3850.048*0.9780.9820.382 0.8250.435
      注:表中数据为平均值和标准差。同一耕作,数据后不同字母表示各处理在 P < 0.05 水平上的差异显著性。*代表 P < 0.05 水平上达显著差异,下同。
    下载: 导出CSV

    表  2  2020年小麦成熟期10 ~ 20 cm土层理化性质

    Table  2.   The nutrient content of the 10 ~ 20 cm soil layer at the maturity of wheat in 2020

    处理
    Treatment
    容重
    Bulk density
    (g cm−3
    含水率
    Moisture
    (%)
    pH有效磷
    Available phosphorus
    (mg kg−1
    速效钾
    Available potassium
    (mg kg−1
    全氮
    Total nitrogen
    (g kg−1
    硝态氮
    Nitrate nitrogen
    (mg kg−1
    有机质
    Organic matter
    (g kg−1
    旋耕CK1.6 ± 0.0 a19.7 ± 0.9 a6.1 ± 0.3 ab21.6 ± 6.1 b159.7 ± 18.6 a0.9 ± 0.2 a17.4 ± 9.6 b17.9 ± 3.3 a
    15M1.6 ± 0.0 a19.5 ± 1.0 a6.4 ± 0.5 ab27.1 ± 2.4 ab167.3 ± 12.9 a1.0 ± 0.1 a27.3 ± 6.5 ab20.2 ± 1.2 a
    22.5M1.6 ± 0.1 a18.3 ± 0.3 b5.8 ± 0.4 b38.9 ± 16.6 a189.3 ± 17.6 a1.0 ± 0.2 a31.3 ± 6.7 a20.2 ± 4.5 a
    15B1.6 ± 0.1 a18.3 ± 0.1 b6.1 ± 0.0 ab20.7 ± 7.6 b170.0 ± 17.1 a1.0 ± 0.1 a14.7 ± 2.1 b18.3 ± 0.1 b
    22.5B1.5 ± 0.0 a19.5 ± 0.2 a6.6 ± 0.4 a21.4 ± 3.9 b190.3 ± 15.6 a1.0 ± 0.1 a16.3 ± 6.8 b19.5 ± 0.2 a
    深耕CK1.5 ± 0.1 a21.1 ± 0.0 a6.0 ± 0.3 a19.6 ± 7.4 c195.3 ± 11.0 ab1.0 ± 0.0 b21.2 ± 7.3 b17.0 ± 2.9 b
    15M1.5 ± 0.1 a21.4 ± 1.0 a5.9 ± 0.4 a39.6 ± 12.9 ab175.3 ± 6.5 c1.2 ± 0.1 a29.3 ± 8.8 b20.4 ± 2.9 ab
    22.5M1.5 ± 0.0 a21.8 ± 0.9 a6.3 ± 0.1 a56.7 ± 11.2 a185.0 ± 10.0 bc1.3 ± 0.1 a45.5 ± 2.8 a23.6 ± 3.2 a
    15B1.5 ± 0.0 a21.2 ± 0.2 a6.3 ± 0.2 a21.6 ± 6.2 bc207.3 ± 3.5 a1.2 ± 0.1 a26.8 ± 8.0 b24.4 ± 2.3 a
    22.5B1.5 ± 0.01 a22.3 ± 1.8 a6.0 ± 0.3 a26.1 ± 8.4 bc172.0 ± 10.1 c1.2 ± 0.1 a29.6 ± 1.7 b24.0 ± 1.0 a
    耕作方式 0.000*0.002*0.2590.058 0.009*0.000*0.001*0.011*
    培肥方式0.7110.530 0.653 0.000*0.2150.024*0.000*0.040*
    交互作用0.8540.016* 0.040*0.3420.8900.431 0.375 0.016
    下载: 导出CSV

    表  3  2020年小麦成熟期20 ~ 30 cm土层理化性质

    Table  3.   The nutrient content of the 20 ~ 30 cm soil layer at the maturity of wheat in 2020

    处理
    Treatment
    容重
    Bulk density
    (g cm−3
    含水率
    Moisture
    (%)
    pH有效磷
    Available
    phosphorus
    (mg kg−1
    速效钾
    Available potassium
    (mg kg-1
    全氮
    Total nitrogen
    (g kg−1
    硝态氮
    Nitrate nitrogen
    (mg kg−1
    有机质
    Organic matter
    (g kg−1
    旋耕

    CK1.6 ± 0.0 a18.8 ± 0.0 b7.3 ± 0.0 a8.5 ± 1.8 a158.3 ± 27.1 a0.7 ± 0.0 a5.4 ± 1.0 b10.1 ± 0.8 b
    15M1.6 ± 0.1 a19.0 ± 0.2 ab7.0 ± 0.0 ab9.5 ± 3.5 a205.0 ± 38.3 a0.7 ± 0.0 a12.2 ± 2.5 ab12.2 ± 1.4 ab
    22.5M1.6 ± 0.0 a19.2 ± 0.0 a6.9 ± 0.3 ab11.2 ± 3.5 a173.0 ± 23.1 a0.7 ± 0.0 a14.3 ± 3.8 a11.1 ± 0.6 b
    15B1.6 ± 0.0 a18.2 ± 0.0 c7.2 ± 0.1 ab6.9 ± 1.2 a173.0 ± 23.0 a0.7 ± 0.1 a9.2 ± 4.2 ab11.2 ± 1.1 b
    22.5B1.6 ± 0.0 a19.3 ± 0.5 a6.8 ± 0.4 b12.7 ± 3.3 a178.0 ± 24.4 a0.8 ± 0.1 a10.0 ± 6.6 ab13.4 ± 1.3 a
    深耕CK1.6 ± 0.0 a19.2 ± 0.3 a7.1 ± 0.4 a8.6 ± 0.7 b199.0 ± 21.6 a0.8 ± 0.0 a8.4 ± 2.9 c11.9 ± 0.9 b
    15M1.6 ± 0.0 a19.8 ± 1.0 a6.7 ± 0.2 ab9.6 ± 1.0 b218.3 ± 21.5 a0.7 ± 0.1 a16.6 ± 5.2 ab12.9 ± 0.5 b
    22.5M1.6 ± 0.1 a19.1 ± 0.6 a6.7 ± 0.2 b26.7 ± 3.2 a191.3 ± 8.1 a0.8 ± 0.2 a20.0 ± 4.1 a17.7 ± 0.3 a
    15B1.5 ± 0.0 a20.5 ± 0.2 a6.9 ± 0.1 ab8.6 ± 4.8 b203.0 ± 25.2 a0.8 ± 0.0 a13.0 ± 4.8 abc13.0 ± 2.6 b
    22.5B1.6 ± 0.0 a19.7 ± 0.3 a6.6 ± 0.1 b9.3 ± 2.2 b207.7 ± 28.6 a0.8 ± 0.0 a12.0 ± 1.4 bc14.4 ± 2.6 b
    耕作方式 0.009*0.002*0.005*0.024* 0.009* 0.041*0.017*0.000*
    培肥方式0.4720.530 0.005*0.000*0.2150.2170.003*0.003*
    交互作用0.4560.016*0.973 0.000*0.8900.8090.946 0.011*
    下载: 导出CSV

    表  4  2019和2020年不同耕作和培肥处理小麦产量(kg hm−2

    Table  4.   Wheat yield under different tillage and fertilization treatments in 2019 and 2020

    处理
    Treatment
    2019年小麦产量
    Wheat production
    in 2019
    2020年小麦产量
    Wheat production
    in 2020
    旋耕CK8323.0 ± 199.6 b7087.8 ± 163.5 a
    15M8157.3 ± 506.0 b7207.1 ± 282.7 a
    22.5M8003.2 ± 500.6 b6035.1 ± 327.7 b
    15B 8535.1 ± 388.5 ab7150.9 ± 342.9 a
    22.5B9010.8 ± 139.0 a7670.2 ± 568.9 a
    深耕CK8111.3 ± 428.3 b7480.7 ± 440.5 b
    15M 8900.1 ± 899.3 ab8010.6 ± 426.4 b
    22.5M 8881.2 ± 392.8 ab8852.7 ± 374.7 a
    15B 8797.1 ± 203.0 ab7901.8 ± 484.4 b
    22.5B9189.7 ± 491.9 a 8154.4 ± 287.8 ab
    耕作0.041*0.000*
    培肥0.043*0.107
    交互0.280 0.000*
    下载: 导出CSV
  • [1] 郭成士, 马东豪, 张丛志, 等. 典型砂姜黑土黑色物质提取方法及成分研究[J]. 土壤学报, 2021, 58(02): 421 − 432.
    [2] 韩 上, 武 际, 李 敏, 等. 深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质[J]. 植物营养与肥料学报, 2020, 26(02): 276 − 284.
    [3] 陈 欢, 曹承富, 张存岭, 等. 基于主成分-聚类分析评价长期施肥对砂姜黑土肥力的影响[J]. 土壤学报, 2014, 51(03): 609 − 617.
    [4] Wang Y K, Zhang Z B, Jiang F H, et al. Evaluating soil physical quality indicators of a Vertisol as affected by different tillage practices under wheat-maize system in the North China Plain[J]. Soil & Tillage Research, 2021, 209: 104970.
    [5] Zhou H, Chen C, Wang D Z, et al. Effect of long-term organic amendments on the full-range soil water retention characteristics of a Vertisol[J]. Soil & Tillage Research, 2020, 202: 104663.
    [6] McMullen M, Jones R, Gallenberg D. Scab of wheat and barley: a re-emerging disease of devastating impact[J]. Plant disease, 1997, 81(12): 1340 − 1348. doi: 10.1094/PDIS.1997.81.12.1340
    [7] 刘小宁, 刘海坤, 黄玉芳, 等. 施氮量、土壤和植株氮浓度与小麦赤霉病的关系[J]. 植物营养与肥料学报, 2015, 21(02): 306 − 317.
    [8] 乔玉强, 曹承富, 赵 竹, 等. 秸秆还田与施氮量对小麦产量和品质及赤霉病发生的影响[J]. 麦类作物学报, 2013, 33(04): 727 − 731.
    [9] 谢迎新, 靳海洋, 孟庆阳, 等. 深耕改善砂姜黑土理化性状提高小麦产量[J]. 农业工程学报, 2015, 31(10): 167 − 173. doi: 10.11975/j.issn.1002-6819.2015.10.022
    [10] 王玥凯, 郭自春, 张中彬, 等. 不同耕作方式对砂姜黑土物理性质和玉米生长的影响[J]. 土壤学报, 2019, 56(06): 1370 − 1380.
    [11] Rahman M T, Guo Z C, Zhang Z B, et al. Wetting and drying cycles improving aggregation and associated C stabilization differently after straw or biochar incorporated into a Vertisol[J]. Soil & Tillage Research, 2017, 175: 28 − 36.
    [12] 尚 杰, 耿增超, 王月玲, 等. 施用生物炭对(土娄)土微生物量碳、氮及酶活性的影响[J]. 中国农业科学, 2016, 49(06): 1142 − 1151.
    [13] 王道中, 花可可, 郭志彬. 长期施肥对砂姜黑土作物产量及土壤物理性质的影响[J]. 中国农业科学, 2015, 48(23): 4781 − 4789. doi: 10.3864/j.issn.0578-1752.2015.23.019
    [14] 陈 欢, 曹承富, 孔令聪, 等. 长期施肥下淮北砂姜黑土区小麦产量稳定性研究[J]. 中国农业科学, 2014, 47(13): 2580 − 2590. doi: 10.3864/j.issn.0578-1752.2014.13.010
    [15] 李培培, 黄柯铭, 申凤敏, 等. 绿肥间作与氮肥减施对砂姜黑土微生物的影响[J]. 华北农学报, 2020, 35(04): 145 − 152.
    [16] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 1999.
    [17] Silva R F D, Severiano E D C, Oliveira G C D, et al. Changes in soil profile hydraulic properties and porosity as affected by deep tillage soil preparation and Brachiaria grass intercropping in a recent coffee plantation on a naturally dense Inceptisol[J]. Soil & Tillage Research, 2021, 213: 105127.
    [18] 蒋发辉, 王玥凯, 郭自春, 等. “旋松一体"耕作对潮土和砂姜黑土物理性质及作物生长的影响[J]. 土壤通报, 2021, 52(4): 801 − 810.
    [19] Jabro J D, Iversen W M, Stevens W B, et al. Physical and hydraulic properties of a sandy loam soil under zero, shallow and deep tillage practices[J]. Soil & Tillage Research, 2016, 159: 67 − 72.
    [20] 王 欣, 尹带霞, 张 凤, 等. 生物炭对土壤肥力与环境质量的影响机制与风险解析[J]. 农业工程学报, 2015, 31(04): 248 − 257. doi: 10.3969/j.issn.1002-6819.2015.04.035
    [21] 王丹丹, 郑纪勇, 颜永毫, 等. 生物炭对宁南山区土壤持水性能影响的定位研究[J]. 水土保持学报, 2013, 27(02): 101 − 104 + 109.
    [22] 魏永霞, 王 鹤, 刘 慧, 等. 生物炭对黑土区土壤水分及其入渗性能的影响[J]. 农业机械学报, 2019, 50(09): 290 − 299.
    [23] 李晓龙, 高聚林, 胡树平, 等. 不同深耕方式对土壤三相比及玉米根系构型的影响[J]. 干旱地区农业研究, 2015, 33(04): 1 − 7 + 29.
    [24] Guo X X, Liu H T, Zhang J. The role of biochar in organic waste composting and soil improvement: a review[J]. Waste Management, 2020, 102: 884 − 899. doi: 10.1016/j.wasman.2019.12.003
    [25] 杨佳宇, 谷思玉, 李宇航, 等. 深翻-旋耕轮耕与有机肥配施对黑土农田土壤物理性质的影响[J]. 土壤通报, 2021, 52(6): 1290 − 1298.
    [26] 陈温福, 张伟明, 孟 军. 农用生物炭研究进展与前景[J]. 中国农业科学, 2013, 46(16): 3324 − 3333. doi: 10.3864/j.issn.0578-1752.2013.16.003
    [27] 陈文举, 李培培, 文 倩, 等. 豫南黏板土壤分层酸化和耕层有效磷分布特征[J]. 应用生态学报, 2022, 33(1): 126 − 132.
    [28] 袁 帅, 赵立欣, 孟海波, 等. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 2016, 22(05): 1402 − 1417.
    [29] 孟红旗, 吕家珑, 徐明岗, 等. 有机肥的碱度及其减缓土壤酸化的机制[J]. 植物营养与肥料学报, 2012, 18(05): 1153 − 1160.
    [30] Tian S Z, Ning T Y, Wang Y, et al. Crop yield and soil carbon responses to tillage method changes in north China[J]. Soil & Tillage Research, 2016, 163: 207 − 213.
    [31] Yao R, Yang J, Zhu W, et al. Impact of crop cultivation, nitrogen and fulvic acid on soil fungal community structure in salt-affected alluvial fluvo-aquic soil[J]. Plant and Soil, 2021(1–3).
    [32] 刘 悦, 史文琦, 曾凡松, 等. 生物炭对小麦赤霉病的防治效果及产量的影响[J]. 植物保护, 2020, 46(04): 270 − 274 + 281.
    [33] Ma Y, Wang G, Chenia H Y, et al. Biochar-mediated control of phytophthora blight of pepper is closely related to the improvement of the rhizosphere fungal community[J]. Frontiers in Microbiology, 2020, 11: 1427. doi: 10.3389/fmicb.2020.01427
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  31
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-13
  • 录用日期:  2022-05-26
  • 修回日期:  2022-05-18
  • 刊出日期:  2022-12-06

目录

    /

    返回文章
    返回