留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水稻秸秆添加对不同种稻年限黑土CH4排放特征的影响

王鸿飞 吴怡慧 张瑞 安晶 张玉玲 虞娜 邹洪涛

王鸿飞, 吴怡慧, 张 瑞, 安 晶, 张玉玲, 虞 娜, 邹洪涛. 水稻秸秆添加对不同种稻年限黑土CH4排放特征的影响[J]. 土壤通报, 2022, 53(6): 1421 − 1430 doi: 10.19336/j.cnki.trtb.2022042001
引用本文: 王鸿飞, 吴怡慧, 张 瑞, 安 晶, 张玉玲, 虞 娜, 邹洪涛. 水稻秸秆添加对不同种稻年限黑土CH4排放特征的影响[J]. 土壤通报, 2022, 53(6): 1421 − 1430 doi: 10.19336/j.cnki.trtb.2022042001
WANG Hong-fei, WU Yi-hui, ZHANG Rui, AN Jing, ZHANG Yu-ling, YU Na, ZOU Hong-tao. Effect of Rice Straw Addition on CH4 Emission in Black Soil with Different Rice Planting Years[J]. Chinese Journal of Soil Science, 2022, 53(6): 1421 − 1430 doi: 10.19336/j.cnki.trtb.2022042001
Citation: WANG Hong-fei, WU Yi-hui, ZHANG Rui, AN Jing, ZHANG Yu-ling, YU Na, ZOU Hong-tao. Effect of Rice Straw Addition on CH4 Emission in Black Soil with Different Rice Planting Years[J]. Chinese Journal of Soil Science, 2022, 53(6): 1421 − 1430 doi: 10.19336/j.cnki.trtb.2022042001

水稻秸秆添加对不同种稻年限黑土CH4排放特征的影响

doi: 10.19336/j.cnki.trtb.2022042001
基金项目: 国家重点研发计划项目(2017YFD0300707-A04)和国家自然科学基金项目(41571280、 41101276、41907005)资助
详细信息
    作者简介:

    王鸿飞(1996−),男,内蒙古巴彦淖尔人,在读研究生,主要从事土壤有机碳转化方面研究。E-mail: 1163860763@qq.com

    通讯作者:

    E-mail: zhangyuling@syau.edu.cn

  • 中图分类号: S156

Effect of Rice Straw Addition on CH4 Emission in Black Soil with Different Rice Planting Years

  • 摘要:   目的  评估水稻秸秆添加对东北地区不同种稻年限黑土CH4的排放的影响,以期为黑土水稻田秸秆还田提供理论依据。  方法  不同种稻年限(0、12、35、62和85 a)黑土,分别设不添加(CK)和添加1%水稻秸秆(S)处理,进行淹水培养试验(培养温度为20 ℃,淹水层为1 cm),测定土壤CH4排放通量及累积排放量,比较不同种稻年限土壤对水稻秸秆添加响应的差异。  结果  在淹水培养期间(150 d),添加水稻秸秆处理各种稻年限土壤CH4排放通量(0.00 ~ 3.33 mg kg−1 d−1)显著(P > 0.05)高于未添加秸秆处理(0.00 ~ 0.13 mg kg−1 d−1),未添加和添加水稻秸秆处理土壤CH4排放主要集中于淹水培养的前80 d和60 d。未添加水稻秸秆处理土壤CH4累积排放量为0.04 ~ 4.45 mg kg−1,不同年限稻田土壤CH4累积排放量差异不显著(P > 0.05)。添加水稻秸秆处理土壤CH4累积排放量为29.64 ~ 91.08 mg kg−1,显著高于未添加水稻秸秆处理(P < 0.05),且12 a和35 a土壤CH4累积排放量显著高于0 a、62 a和85 a(P < 0.05)。未添加和添加水稻秸秆处理土壤CH4累积排放量与土壤有机碳、可溶性有机碳氮和铵态氮含量呈显著正相关(P < 0.01)。添加水稻秸秆处理土壤CH4累积排放量还与土壤β-葡萄糖苷酶活性呈显著负相关(P < 0.05),土壤CH4累积排放量增量也与土壤有机碳含量也呈显著线性正相关(P < 0.01)。水稻秸秆添加后土壤可溶性有机氮含量是影响土壤CH4排放的直接因素,土壤可溶性有机碳和铵态氮含量及β-葡萄糖苷酶活性是影响土壤CH4排放的间接因素。  结论  水稻秸秆添加显著促进了黑土不同种稻年限土壤CH4排放,种稻年限越长,水稻秸秆添加后土壤CH4排放量越少。本试验条件下,黑土种稻年限大于35年时,水稻秸秆还田带来的土壤CH4排放量相对较小。
  • 图  1  不同处理土壤CH4排放通量及累积排放量的动态变化

    CK代表不添加秸秆处理和S代表添加秸秆处理,下标数字代表种稻年限。下同。

    Figure  1.  Dynamic changes of emission flux and cumulative emissions of soil CH4 from different treatments

    图  2  培养结束时不同处理土壤CH4累积排放量

    不同小写字母表示10个处理间差异显著(P < 0.05)。

    Figure  2.  Soil CH4 cumulative emissions at the end of incubation of different treatments

    图  3  土壤CH4排放量(150 d)与土壤有机碳含量的关系

    (a)为不添加秸秆(CK)和添加秸秆(S)处理CH4排放量,(b)为添加秸秆(S)处理较不添加秸处(CK)处理相比的CH4排放增量。数据为三次重复样本数据。

    Figure  3.  Relationship between the soil CH4 cumulative emissions (150 days) and soil organic carbon content

    图  4  不同处理土壤可溶性有机碳氮和铵态氮含量的动态变化

    CK代表不添加秸秆处理和S代表添加秸秆处理,下标数字代表种稻年限。

    Figure  4.  Dynamic changes of DOC, DON and NH4 + -N in different treatments

    图  5  不同处理土壤β-葡萄糖苷酶活性的动态变化

    Figure  5.  Dynamic changes of soil β-glucosidase activity in different treatments

    表  1  供试土壤的地理坐标及基本性质

    Table  1.   Geographical information and basic properties of the soil samples

    年限
    Year
    (a)
    地理坐标
    Geographic coordinates
    pH有机碳
    Organic C
    (g kg–1)
    全氮
    Total N
    (g kg–1)
    C/N碱解氮
    Alkaline N
    (mg kg–1)
    速效磷
    Available P
    (mg kg–1)
    速效钾
    Available K
    (mg kg–1)
    0 127.466° E, 47.031° N 5.0 c 38.8 bc 3.8 a 10.2 d 324.2 a 19.3 b 144.7 b
    12 127.470° E, 47.026° N 5.6 a 45.7 a 3.7 a 12.5 bc 267.3 b 34.7 ab 150.9 b
    35 127.476° E, 47.028° N 5.4 ab 42.5 ab 3.3 a 12.8 a 238.4 c 35.5 ab 144.3 b
    62 127.479° E, 47.027° N 5.5 ab 34.7 cd 2.7 b 12.7 ab 218.0 d 34.6 ab 125.6 a
    85 127.476° E, 47.033° N 5.4 b 31.1 d 2.5 b 12.4 c 163.6 e 37.3 a 124.4 a
      注:不同小写字母表示5个年限间差异显著(P < 0.05)。
    下载: 导出CSV

    表  2  土壤CH4累积排放量的双因素方差分析结果(P值)

    Table  2.   Results of two factor analysis of variance of soil CH4 cumulative emissions (P value)

    因素
    Factor
    培养时间 (d)
    Incubation time
    71530456080100130150
    秸秆 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
    年限 < 0.01 < 0.01 > 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
    秸秆 × 年限 < 0.01 > 0.05 > 0.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
    下载: 导出CSV

    表  3  土壤可溶有机碳氮和铵态氮含量及β-葡萄糖苷酶活性的双因素方差分析的结果(P值)

    Table  3.   Results of two-way ANOVA of DOC, DON, NH4 + -N and β-glucosidase activity (P value)

    因素
    Factor
    DOCDONNH4 + -Nβ-glucosidase
    秸秆 < 0.01 < 0.01 < 0.01 > 0.05
    年限 < 0.01 < 0.01 < 0.01 < 0.05
    秸秆 × 年限 < 0.01 < 0.01 < 0.05 < 0.01
      注:DOC:可溶性有机碳,DON:可溶性有机氮,NH4 + -N:铵态氮,β-glucosidase:β-葡萄糖甘酶。
    下载: 导出CSV

    表  4  土壤可溶性有机碳氮和铵态氮含量、β-葡萄糖苷酶活性与土壤CH4累积排放量相关性分析

    Table  4.   Correlation analysis between the soil CH4 cumulative emissions and DOC, DON, NH4 + -N and β-glucosidase activity

    处理
    Treatment
    指标
    Index
    DOCDONNH4 + −Nβ-glucosidaseCH4累积排放量
    CH4 cumulative emissions
    CK DOC 1 0.903** 0.924** 0.400 0.719**
    DON 1 0.927** 0.237 0.896**
    NH4 + -N 1 0.184 0.710**
    β-glucosidase 1 0.271
    S DOC 1 0.772** 0.769** −0.206 0.677**
    DON 1 0.976** −0.453 0.884**
    NH4 + -N 1 −0.532* 0.868**
    β-glucosidase 1 −0.517*
      注: DOC:可溶性有机碳,DON:可溶性有机氮,NH4 + −N:铵态氮,β-glucosidase:β-葡萄糖甘酶。***分别表示0.05,0.01显著水平。
    下载: 导出CSV

    表  5  土壤CH4累积排放量的影响因素的通径分析

    Table  5.   Path analysis of influencing factors for CH4 cumulative emissions

    处理
    Treatment
    指标
    Index
    直接通径系数
    Direct path coefficient
    间接通径系数
    Indirect path coefficient
    DOCDONNH4 + −Nβ-glucosidase
    CK DOC −0.128 1.557 −0.710
    DON 1.724 −0.116 −0.713
    NH4 + -N −0.769 −0.118 1.598
    S DOC 0.065 0.769 −0.195 0.039
    DON 0.996 0.050 −0.247 0.085
    NH4 + -N −0.254 0.050 0.972 0.100
    β-glucosidase −0.188 −0.013 −0.451 0.135
      注: DOC:可溶性有机碳,DON:可溶性有机氮,NH4 + -N:铵态氮,β-glucosidase:β-葡萄糖甘酶。
    下载: 导出CSV
  • [1] Faostat database[DB]. December 18, 2020.
    [2] Lelieveld J, Crutzen P J, Dentener J. Changing concentration, lifetime and climate forcing of atmospheric methane[J]. Tellus Series Biochemical & Physical Meteorology, 1998, 50(2): 128 − 150.
    [3] Tang S, Cheng W, Hu R, et al. Simulating the effects of soil temperature and moisture in the off-rice season on rice straw decomposition and subsequent CH4, production during the growth season in a paddy soil[J]. Biology & Fertility of Soils, 2016, 52(5): 739 − 748.
    [4] Zhang Y, Hou W, Chi M, et al. Simulating the effects of soil temperature and soil moisture on CO2 and CH4 emissions in rice straw-enriched paddy soil[J]. Catena, 2020, 194: e104677. doi: 10.1016/j.catena.2020.104677
    [5] Zhu Z, Ge T, Luo Y, et al. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil[J]. Soil Biology and Biochemistry, 2018, 121: 67 − 76. doi: 10.1016/j.soilbio.2018.03.003
    [6] Zhu Z, Zeng G, Ge T, et al. Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil-Part 1: Decomposition and priming effect[J]. Biogeosciences, 2016, 13(15): 4481 − 4489. doi: 10.5194/bg-13-4481-2016
    [7] 曹 明, 朱启林, 汤水荣, 等. 添加秸秆及其生物质炭对淹水条件下砖红壤N2O和CH4排放的影响[J]. 土壤通报, 2021, 52(4): 895 − 902.
    [8] Yan X, Akiyama H, Yagi K, et al. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines[J]. Global Biogeochemical Cycles, 2009, 23(2): 1 − 15.
    [9] Huang S, Sun Y, Yu X, et al. Interactive effects of temperature and moisture on CO2 and CH4 production in a paddy soil under long-term different fertilization regimes[J]. Biology & Fertility of Soils, 2016, 52(3): 285 − 294.
    [10] Nakajima M, Cheng W, Tang S, et al. Modeling aerobic decomposition of rice straw during the off-rice season in an Andisol paddy soil in a cold temperate region of Japan: Effects of soil temperature and moisture[J]. Soil Science and Plant Nutrition, 2016, 62(1): 90 − 98. doi: 10.1080/00380768.2015.1121116
    [11] 王 瑞. 秸秆添加对土壤温室气体排放和溶解性有机碳DOC组分的影响[D]. 武汉: 华中农业大学, 2018.
    [12] Carlson K M, Gerber J S, Mueller N D, et al. Greenhouse gas emissions intensity of global croplands[J]. Nature Climate Change, 2017, 7(1): 63 − 68. doi: 10.1038/nclimate3158
    [13] Chu G, Wang Z, Zhang H, et al. Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation[J]. Food and Energy Security, 2015, 4(3): 238 − 254. doi: 10.1002/fes3.66
    [14] Haque M M, Kim G W, Kim P J, et al. Comparison of net global warming potential between continuous flooding and midseason drainage in monsoon region paddy during rice cropping[J]. Field Crops Research, 2016, 193: 133 − 142. doi: 10.1016/j.fcr.2016.04.007
    [15] Nie T, Chen P, Zhang Z, et al. Effects of irrigation method and rice straw incorporation on CH4 emissions of paddy fields in Northeast China[J]. Paddy and Water Environment, 2019, 18(1): 111 − 120.
    [16] Hadi A, Inubushi K, Yagi K. Effect of water management on greenhouse gas emissions and microbial properties of paddy soils in Japan and Indonesia[J]. Paddy Water Environ, 2010, 8(4): 319 − 324. doi: 10.1007/s10333-010-0210-x
    [17] Wu X, Wang W, Xie K, et al. Combined effects of straw and water management on CH4 emissions from rice fields[J]. Journal of Environmental Management, 2019, 231: 1257 − 1262. doi: 10.1016/j.jenvman.2018.11.011
    [18] Wang N, Yu J G, Zhao H Y, et al. Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions[J]. Atmospheric Environment, 2018, 174: 171 − 179. doi: 10.1016/j.atmosenv.2017.11.054
    [19] 肖小平, 伍芬琳, 黄风球, 等. 不同稻草还田方式对稻田温室气体排放影响研究[J]. 农业现代化研究, 2017, 28(5): 629 − 632.
    [20] Jiang S, Wang Y, Hao Q, et al. Effect of land-use change on CH4 and N2O emissions from freshwater marsh in Northeast China[J]. Atmospheric Environment, 2009, 43(21): 3305 − 3309. doi: 10.1016/j.atmosenv.2009.04.020
    [21] Lang M, Cai Z, Chang S X. Effects of land use type and incubation temperature on greenhouse gas emissions from Chinese and Canadian soils[J]. Journal of Soils and Sediments, 2011, 11(1): 15 − 24. doi: 10.1007/s11368-010-0260-0
    [22] 迟美静. 黑土开垦种稻土壤团聚体及其组分有机碳的变化特征[D]. 沈阳: 沈阳农业大学, 2019.
    [23] 迟美静, 侯 玮, 孙 莹, 等. 东北黑土区荒地开垦种稻后土壤养分及pH值的变化特征[J]. 土壤通报, 2018, 49(3): 546 − 551. doi: 10.19336/j.cnki.trtb.2018.03.07
    [24] Cheng W, Tsuruta H, Chen G, et al. N2O and NO production in various Chinese agricultural soils by nitrification[J]. Soil Biology and Biochemistry, 2004, 6(6): 53 − 963.
    [25] Cheng Y, Yagi k, Akai H. Changes in concentration and δ13C value of dissolved CH4, CO2 and organic carbon in rice paddies under ambient and elevated concentrations of atmospheric CO2[J]. Organic Geochemistry, 2005, 36(5): 813 − 823. doi: 10.1016/j.orggeochem.2005.01.009
    [26] Bao Q, Xiao K, Chen Z, et al. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw[J]. FEMS Microbiology Ecology, 2014, 8(2): 72 − 385.
    [27] Sander B O, Samson M, Buresh R J. Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops[J]. Geoderma, 2014, 235-236(4): 355 − 362.
    [28] 闫 超. 水稻秸秆还田腐解规律及对土壤养分和酶活性的影响[D]. 哈尔滨: 东北农业大学, 2012.
    [29] Zhang D, Cui R, Fu B, et al. Shallow groundwater table fluctuations affect bacterial communities and nitrogen functional genes along the soil profile in a vegetable field[J]. Applied Soil Ecology, 2019, 146: 103368.
    [30] An T, Schaffer S, Zhuang J, et al. Dynamics and distribution of 13C-labeled straw carbon by microorganisms as affected by soil fertility levels in the Black Soil region of Northeast China[J]. Biology & Fertility of Soils, 2015, 51(5): 605 − 613.
    [31] Bhattacharyya P, Roy K S, Neogi S, et al. Effects of rice straw and nitrogen fertilization on greenhouse gas emissions and carbon storage in tropical flooded soil planted with rice[J]. Soil and Tillage Research, 2012, 124: 119 − 130. doi: 10.1016/j.still.2012.05.015
    [32] 高焕平. 秸秆与氮肥调节C/N比对潮土温室气体排放及土壤理化性质的影响[D]. 郑州: 河南农业大学, 2018.
    [33] Li M, Xue L, Zhou B, et al. Effects of domestic sewage from different sources on greenhouse gas emission and related microorganisms in straw-returning paddy fields[J]. Science of the Total Environment, 2020, 718: 30917 − 30923.
    [34] Cui Y, Fang L, Guo X, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China[J]. Soil Biology & Biochemistry, 2018, 116: 11 − 21.
    [35] 袁 武, 靳振江, 程跃扬, 等. 岩溶湿地和稻田的土壤酶活性与CO2和CH4排放特征[J]. 中国农业科学, 2020, 53(14): 2897 − 2906. doi: 10.3864/j.issn.0578-1752.2020.14.013
    [36] 万忠梅, 宋长春. 土壤酶活性对生态环境的响应研究进展[J]. 土壤通报, 2009, 40(4): 951 − 956. doi: 10.19336/j.cnki.trtb.2009.04.050
    [37] 宋长春, 宋艳宇, 王宪伟, 等. 气候变化下湿地生态系统碳、氮循环研究进展[J]. 湿地科学, 2018, 16(3): 424 − 431. doi: 10.13248/j.cnki.wetlandsci.2018.03.020
    [38] 陈 贵, 赵国华, 张红梅. 等. 长期施用有机肥对水稻产量和氮磷养分利用效率的影响[J]. 中国土壤与肥料, 2017, (1): 92 − 97. doi: 10.11838/sfsc.20170116
    [39] Pandey A, Mai V T, Vu D Q, et al. Organic matter and water management strategies to reduce methane and nitrous oxide emissions from rice paddies in Vietnam[J]. Agriculture, Ecosystems and Environment, 2014, 196(1): 137 − 146.
    [40] Bayer C, Zschonack T, Pedroso G M, et al. A seven-year study on the effects of fall soil tillage on yield-scaled greenhouse gas emission from flood irrigated rice in a humid subtropical climate[J]. Soil and Tillage Research, 2015, 145: 118 − 125. doi: 10.1016/j.still.2014.09.001
    [41] Yao H R, Conard R, Wassmann R, et al. Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy[J]. Biogeochemistry, 1999, 47(3): 269 − 295. doi: 10.1007/BF00992910
  • 加载中
图(5) / 表(5)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  37
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 录用日期:  2022-06-24
  • 修回日期:  2022-06-23
  • 刊出日期:  2022-12-06

目录

    /

    返回文章
    返回